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An immersed nonconforming finite element method based on the flux continuity on
intercell boundaries is introduced. The direct application of flux continuity across the
support of basis functions yields a nonsymmetric stiffness system for interface elements. To
overcome non-symmetry of the stiffness system we introduce a modification based on the
Riesz representation and a local postprocessing to recover local fluxes. This approach yields
a P1 immersed nonconforming finite element method with a slightly different source term
from the standard nonconforming finite element method. The recovered numerical flux
conserves total flux in arbitrary sub-domain. An optimal rate of convergence in the energy
norm is obtained and numerical examples are provided to confirm our analysis.

© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider a simple model interface problem:

−div (κ∇u) = f in Ω,

u = 0 on ∂Ω, (1.1)

where the domain Ω = Ω− ∪ Ω+ is a simply connected, bounded polygonal domain with a piecewise smooth interface Γ .
The conductivity, κ is piecewise constant so that κ = κ± on each Ω± .

The finite element (FE) formulation for (1.1) traces back to Babuska et al. [1–3]. They developed the partition of unity FE
methods in which the finite elements are constructed by solving the interface problem locally. The local basis functions in
these methods are able to capture very well the important features of the exact solution and they can be non-polynomials.
Bramble and King derived a finite element method in which the smooth boundary and interface of the problem domain
are approximated by polygonal domain and interface [4]. Later, the immersed finite element method (IFE) was introduced,
where they allow the interface to cut through the element and the local basis functions constructed to satisfy the interface
jump conditions of normal fluxes. IFE methods do not locally solve the interface problem and their basis functions are
piecewise polynomials [9,10,14–17].

It is known that the finite volume method produces physically more relevant solutions for evolution equations than the
usual finite element does. There have been studies in this direction for interface problems in the name of the immersed
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finite volume method [8,13]. The purpose of our paper is to introduce a P1-nonconforming finite element induced by
hybridization and a post processing to recover flux conserving numerical fluxes. By hybridization, we mean a construction
of the linear system using flux continuity on the support of a local basis function. The major advantage of hybridization is
that it produces flux preserving numerical schemes like a finite volume method, however it does not need a control volume
generation. For details of hybridized methods we refer to [6,11,12]. As observed in [11,12], the P1 and P2 type hybridized
methods yield symmetric linear systems for problems without an immersed interface. Especially, for a nonconforming P1
method the hybridized method results in a symmetric nonconforming finite element system with a modified right hand
side. A direct hybridization of immersed finite element method for interface problems yields a nonsymmetric linear system
due to the interface elements. Non-symmetry of a linear system can cause difficulties in developing fast convergent iterative
schemes.

In this paper we consider a modification of the hybridized method to obtain a symmetric stiffness system. The mod-
ification is needed only for elements with an immersed interface. The modification is composed of two procedures: (1)
conversion of the nonsymmetric hybridized system into a symmetric nonconforming finite element system by using the
Riesz representation, (2) a postprocessing to recover flux by an inverse Riesz representation so that it satisfies intercell flux
continuity.

The paper is organized as follows. In Section 2, the function spaces, triangulation and its skeleton, and a hybridization
approach are described. In Section 3, a conversion of a hybridized method into a typical nonconforming finite element
method by using the Riesz representation is introduced. An analysis in the energy norm is provided in Section 4. In Sec-
tion 5, we consider the rectangular elements. It is not difficult to see that the analysis in the previous section for triangular
elements can be extended directly. In Section 6, we provide numerical results for simple elliptic interface problems by
varying conductivity ratio. Numerical experiments are performed for both triangular and rectangular triangulations.

2. Hybridization

Let us first introduce triangulations and functional spaces. Let Th be a shape regular, quasi-uniform triangular (or rect-
angular in Section 5) triangulation of Ω , where maxK∈Th diam(K ) = h. The skeleton Kh of a triangulation Th is

Kh =
⋃

e∈Eh

e,

where Eh is the set of edges. When the interface Γ trespasses a triangle T , it is called an (immersed) interface triangle.
Otherwise, it is a noninterface triangle.

Let Hm(D) = W m
2 (D) be the usual Sobolev space of order m with the norm ‖ · ‖m,D . Here, D ⊂ R

2 can be the whole
domain Ω or a triangle T . The optimal function space for strong solutions of (1.1) is

H1
div(Ω) = {

u ∈ H1(Ω): div (κ∇u) ∈ L2(Ω)
}
.

For our numerical purpose we introduce the space H̃2(D) ⊂ H1
div(D) such that

H̃2(D) := {
u ∈ H1(D): κ∇u ∈ [

H1(D)
]2}

,

equipped with the norm

‖u‖2
H̃2(D)

:= ‖u‖2
1,D + ‖κ∇u‖2

1,D .

In the finite element analysis we require a regularity of solution

‖u‖2
H2(Ω+∪Ω−)

= ‖u‖2
1,Ω + ‖u‖2

2,Ω+ + ‖u‖2
2,Ω− < ∞

with the interface condition, [[∂κ
ν u]]Γ = (κ+ ∂u

∂ν+ + κ− ∂u
∂ν− )|Γ = 0 to have an optimal order of convergence. However, in our

approach we require a stronger regularity u ∈ H̃2(Ω) for an optimal convergence analysis.
We denote the skeleton trace of H1(Ω) by H1/2(Kh) and that of H1

0(Ω) by H1/2
0 (Kh). By the nature of nonconforming

methods our analysis is based on the discrete Sobolev space H1(Th) = ∏
T ∈Th

H1(T ) with the norm and seminorm:

‖u‖2
1,h :=

∑
T ∈Th

‖u‖2
1,T , |u|21,h :=

∑
T ∈Th

|u|21,T .

The discrete inner product is given as

(κ∇u,∇v)h =
∑
T ∈Th

(κ∇u,∇u)T .
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