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The two-level local projection stabilization with the pair (Q r,h, Q disc
r−1,2h), r ≥ 1, of spaces 

of continuous, piecewise (mapped) polynomials of degree r on the mesh Th in each 
variable and discontinuous, piecewise (mapped) polynomials of degree r − 1 on the macro 
mesh Mh in each variable satisfy a local inf–sup condition leading to optimal error 
estimates. In this note, we show that even the pair of spaces (Q r,h, Q disc

r,2h), r ≥ 2, with 
the enriched projection space Q disc

r,2h satisfies the local inf–sup condition and can be used 
in this framework. This gives a new, alternative proof of the inf–sup condition for the pair 
(Q r,h, Q disc

r−1,2h) in higher order cases r ≥ 2.
© 2014 Published by Elsevier B.V. on behalf of IMACS.

1. Introduction

The local projection stabilization (LPS) is a popular method for solving scalar convection–diffusion–reaction equations, the 
Stokes problem and the Oseen problem [1–3,7–11,14,16,18]. There are different versions of the local projection stabilization 
on the market; here we will consider the two-level approach based on a standard finite element space Yh on a mesh Th
and on projection spaces Dh living on a macro mesh Mh . Hereby, the finer mesh is generated from the macro mesh by 
applying a certain refinement rule. For a convection–diffusion–reaction equation of type

−ε�u + b · ∇u + cu = f in Ω, u = 0 on Γ = ∂Ω,

the discrete problem of the LPS reads:

Find uh ∈ Vh such that for all vh ∈ Vh

ε(∇uh,∇vh) + (b · ∇uh + cuh, vh) +
∑

M∈Mh

τM(κM∇uh, κM∇vh)M = ( f , vh).

Here, τM ≥ 0 are user-chosen parameters, Vh := Yh ∩ H1
0(Ω) denotes the ansatz space, (·, ·)M is the inner product in L2(M)

and its vector-valued version, respectively [4]. In case that M = Ω we omit the index M and write (·, ·) instead of (·, ·)Ω . 
Let πh : L2(Ω) → Dh be the L2-projection into the discontinuous projection space Dh and κh := id − πh be the fluctuation 
operator, where its application to a vector has to be understood component-wise.

A fundamental property in the convergence analysis of the LPS is the L2-orthogonality of the interpolation error in 
the ansatz space to the discontinuous projection space. In [13], it has been shown that a local inf–sup condition between 
ansatz and projection space is sufficient to construct modifications of standard interpolations which satisfy this additional 
orthogonality and lead to optimal error estimates in the convection-dominated case ε � ‖b‖0,∞ .
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Different refinement rules for generating the mesh Th from the macro mesh Mh can be found in the literature. For 
example, in [6,13,17] each hexahedral macro cell M ∈ Mh is divided into 2d hexahedral cells K ∈ Th using the multi-linear
reference mapping F M : M̂ → M from the reference hyper-cube M̂ = (−1, +1)d onto M and their refined 2d congruent 
hyper-cubes onto K ⊂ M . Then, as shown in [13, Lemma 3.2] the pairs (Yh, Dh) = (Q r,h, Q disc

r−1,2h), r ≥ 1, of spaces of continu-
ous, piecewise (mapped) polynomials of degree r on Th in each variable and discontinuous, piecewise (mapped) polynomials 
of degree r − 1 on Mh in each variable satisfy the local inf–sup condition and can be used in the LPS framework. Let us 
define the local spaces

Dh(M) := {qh|M : qh ∈ Dh}, Yh(M) := {vh|M : vh ∈ Yh} ∩ H1
0(M).

Then, the local inf–sup condition between ansatz and projection space reads

∃β > 0, ∀h > 0, ∀M ∈ Mh inf
qh∈Dh(M)

sup
vh∈Yh(M)

(qh, vh)M

‖vh‖0,M ‖qh‖0,M
≥ β (1)

where ‖ · ‖0,M denotes the norm in L2(M). Roughly speaking (1) means that the bubble part of the ansatz space Yh(M)

has to be rich enough compared to the local projection space Dh(M), in particular, dim Yh(M) ≥ dim Dh(M) is a necessary 
condition for (1). Although for the pairs (Yh, Dh) = (Q r,h, Q disc

r,2h) with the larger projection spaces Q disc
r,2h ⊃ Q disc

r−1,2h the 
necessary condition

dim Yh(M) = (2r − 1)d ≥ (r + 1)d = dim Dh(M) r ≥ 2,

is satisfied, the validity of the inf–sup condition (1) was unknown [13, Remark 3.4]. In this note, we give a positive answer 
to this open problem for sequences of uniformly refined meshes Mh . Note that if the inf–sup condition is satisfied for the 
pair (Q r,h, Q disc

r,2h), r ≥ 2, it is also satisfied for any pair (Q r,h, Dh) with Dh ⊂ Q disc
r,2h and r ≥ 2. Thus, in particular, a new 

alternative proof of the inf–sup condition for the pair (Q r,h, Q disc
r−1,2h) in higher order cases r ≥ 2 is given. Moreover, our 

approach offers the use of reduced two-level approaches in the spirit of [8,19].

2. The one-dimensional case

Let M̂ = (−1, +1) be the reference macro, K̂− = (−1, 0), K̂+ = (0, 1), and F M : M̂ → M the affine mapping of M̂ onto 
the macro cell M ∈Mh . The set of macro cells decompose the computational domain Ω ⊂ R. We define the spaces

P̂r,h := {
v̂ ∈ H1(M̂) : v̂|K̂− ∈ Pr(K̂−), v̂|K̂+ ∈ Pr(K̂+)

}
, P̂r,2h := Pr(M̂),

where dim P̂ r,h = 2r + 1 and dim P̂ r,2h = r + 1. Consider the set of nodal functionals

Ni(v̂) :=
+1∫

−1

v̂(ξ)Li(ξ)dξ, i = 0,1, . . . , r,

Nr+1(v̂) := v̂(−1), Nr+2(v̂) := v̂(+1),

where Li , i = 0, 1, . . ., denote the Legendre polynomials of degree i on (−1, +1) normalized such that Li(1) = 1. The first 
r + 1 nodal functionals guarantee that a local interpolation Ĵ : H1(M̂) → P̂ r,h , defined by Ni(v̂ − Ĵ v̂) = 0 for i = 0, . . . , r + 2, 
satisfies the orthogonality property

(v̂ − Ĵ v̂,q)M̂ = 0 for all q ∈ Pr(M̂), v̂ ∈ H1(M̂).

The last two nodal functionals secure that the interpolation can be extended to a global continuous interpolation jh :
H1

0(Ω) → Vh with the desired properties. However, because of dim P̂ r,2h < r + 3 we cannot hope to find an interpolation 
Ĵ : H1(M̂) → P̂ r,2h into the coarse space P̂ r,2h satisfying all r + 3 conditions. We will show that a suitable enrichment 
of P̂ r,2h by just two additional functions from P̂ r,h is enough to meet these requirements. Let us consider the following 
functions

ϕ̂r(x) :=
{

Λr(x) + Λr−1(x) x ∈ [−1,0],
Λr(−x) + Λr−1(−x) x ∈ [0,+1],

ψ̂r(x) :=
{

Λr(x) − Λr−2(x) x ∈ [−1,0],
−(Λr(−x) − Λr−2(−x)) x ∈ [0,+1],

where Λr denotes the Legendre polynomial of degree r on (−1, 0) given by

Λr(x) = Lr(2x + 1), x ∈ (−1,0).

Furthermore, we introduce the linear mapping Φ : P̂ r,h →R
r+3 given by

Φ(v̂) = (
N0(v̂), . . . , Nr+2(v̂)

)
.
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