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This paper presents a multiscale analysis for stochastic elliptic equations in heterogeneous 
media. The main contributions are threefold: derive the convergence rate of the first-order 
asymptotic solution based on the periodic approximation method; develop a new technique 
for dealing with a large stochastic fluctuation; and present a novel multiscale asymptotic 
method. A multiscale finite element method is developed, and numerical results for solving 
stochastic elliptic equations with rapidly oscillating coefficients are reported.
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1. Introduction

In this paper, we consider the stochastic elliptic equation with rapidly oscillating coefficients given by⎧⎪⎨⎪⎩
Lεuε(x,ω) ≡ − ∂

∂xi

(
aε

i j(x,ω)
∂uε(x,ω)

∂x j

)
= f (x), (x,ω) ∈ Ω × Θ,

uε(x,ω) = g(x), (x,ω) ∈ ∂Ω × Θ,

(1)

where Ω ⊂ Rn is a bounded convex domain, and (Θ, F , μ) is a standard probability space.
We make the following assumptions:
(A1) (aε

i j(x, ω)) is a symmetric matrix and μ(ω ∈ Θ : aε
i j(x, ω) ∈ [γ0, γ1], ∀x ∈ Ω) = 1, γ0, γ1 are non-random positive 

constants.
(A2) aε

i j ∈ L2(Θ, dμ; L∞(Ω)), where L2(Θ, dμ; L∞(Ω)) is the Lebesgue space with respect to a product measure μ, 

see [30]. f ∈ L2(Ω), g ∈ H
1
2 (∂Ω).

The model problem given in (1) has a wide range of applications, such as in heat and mass transfer of composite mate-
rials or porous media, and in fluid mechanics on heterogeneous media [31,33]. These problems typically involve materials 
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with a large number of heterogeneities (inclusions or holes). In such cases, a direct numerical computation becomes ex-
tremely difficult, because it would require a very fine mesh to ensure the accuracy. The crucial idea of the homogenization 
method is to give the overall behavior of the composite by incorporating the fluctuations due to heterogeneities. The most 
general theory of the homogenization without any special assumptions on the problem geometry (such as the periodicity 
or randomness) is the H-convergence, see [27]. The H-convergence method applies to periodic homogenization and gives 
an explicit formula for this limit. Recently, Svanstedt [32] used the H-convergence to construct explicit formulas for elliptic 
and parabolic problems in random multiscale structures. Kozlov [22] (see also [29]) showed that, for almost all ω ∈ Θ a 
matrix-valued, statistically homogeneous ergodic random field Aε(x, ω) admits homogenization as ε → 0, and the homoge-
nization matrix Â is independent of ω. The related problems were also studied in [19,31,33,35]. However, to our knowledge, 
only a few numerical studies have been conducted for the stochastic homogenization. Jardak and Ghanem [18] presented a 
formulation and numerical analysis of stochastic homogenization and the main feature is the characterization of the homog-
enized solution as a stochastic process, which is identified with its projection on a basis in a suitable Hilbert space. E and 
Engquist [10] proposed the overall framework of the heterogeneous multi-scale method (HMM). Furthermore, this method 
has been extended to random heterogeneities, see [11,12,24,25]. Li and Cui [23] employed a direct Monte Carlo method to 
calculate the effective elastic constants of the composite materials with a discrete random field. Luo [26] developed an up-
scaled Wiener chaos expansion (WCE) method to solve stochastic elliptic equations with rapidly oscillating coefficients. They 
further applied this method to the uncertainty quantification in a subsurface modeling. Kaminśki and Kleiber [20] used the 
second order perturbation and the stochastic second central moment to solve the homogenization problem of two-phase 
elastic composites and also presented a mathematical formulation and numerical analysis for a homogenization of random 
elastic composites with stochastic interface defects, see [21]. It should be noted that numerous studies on numerical so-
lutions for SPDEs without a small parameter ε have been reported, and it is impossible to mention all contributions here. 
We refer the interested reader to references listed in [1–3,14–16,30,34].

We recall that a homogenization describes the asymptotic behavior of the solution to the problem as ε → 0. However, 
in many engineering applications, while ε is small, it does not approach zero. Numerous numerical results (e.g. [8,9]) have 
shown that the numerical accuracy of the standard homogenization method may not be satisfactory if ε is not sufficiently 
small. It is our motivation to introduce the multiscale asymptotic methods for solving SPDEs with rapidly oscillating coeffi-
cients.

The new contributions addressed in this paper are as follows. Using Bourgeat’s idea on the periodic approximation 
of a random media, we derive the convergence rate of the first-order asymptotic solution for problem (1) based on the 
homogenization result of [6]. In principle, the validity of a perturbation method is restricted to cases where the ran-
dom elements exhibit only small fluctuations about their mean values. In this paper, we present a new technique for 
dealing with large fluctuations, and thanks to the theoretical results of [13], we obtain the convergence rates for the 
Karhunen–Loève expansion and the modified Neumann expansion. If the right-hand-side of the equation contains a small 
parameter ε and random variables, then the classical multiscale asymptotic methods cannot be employed [4,9,19]. In this 
study, we present a novel multiscale asymptotic method and derive the convergence results. The crucial step is the deter-
mination of the corrector terms. Finally, a multiscale finite element method is developed and numerical simulations are 
reported.

Denote uniformly by C the positive non-random constant independent of ε. For convenience, we use the Einstein sum-
mation convention for the repeated indices.

2. Periodic approximation of random media

We first introduce Bourgeat’s result of a periodic approximation for the random media, see [6]. To this end, we need to 
make the following assumption:

(A3) Aε(x, ω) = (aε
i j(x, ω)) is a matrix-valued, statistically homogeneous ergodic random field, see [19,22,29].

We now recall some definitions and notation. Let (Θ, F , μ) be a standard probability space, and assume that an 
n-dimensional dynamical system T z , z ∈ Rn , is given on Θ , i.e. a family of invertible maps T z : Θ → Θ , z ∈ Rn , such that

(i) T y+z = T y T z , T0 = I , where I is an identify operator;
(ii) T z preserves the measure μ, i.e. μ(T −1

z (A)) = μ(A) for any A ∈F and any z ∈ Rn;
(iii) T z is a measurable mapping from Rn × Θ to Θ , where Rn × Θ is equipped with the product σ -algebra B ×F and 

B is the Borel σ -algebra in Rn .
For such a dynamical system, a large class of statistically homogeneous random fields can be introduced as follows. 

For an arbitrary random variable f = f (ω), we define f (z, ω) ≡ f (T zω). It is easy to verify that f (z, ω) is a statistically 
homogeneous random field. We suppose that the coefficients of the random operators are defined in terms of a dynamical 
system T z .

The definition of a uniform mixing condition [6] can be described as follows. Given a statistically homogeneous random 
field ζ(z, ω) in Rn , we denote FA the σ -algebra σ {ζ(z), z ∈ A}. The function

α(s) = sup
A,B⊂Rn,dist(A,B)≥s

sup
A∈FA ,B∈FB

∣∣μ(A∩ B) − μ(A)μ(B)
∣∣
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