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In this paper, we propose a novel alternating projection based prediction–correction
method for solving the monotone variational inequalities with separable structures. At
each iteration, we adopt the weak requirements for the step sizes to derive the predictors,
which affords fewer trial and error steps to accomplish the prediction phase. Moreover,
we design a new descent direction for the merit function in correction phase. Under
some mild assumptions, we prove the global convergence of the modified method. Some
preliminary computational results are reported to demonstrate the promising and attractive
performance of the modified method compared to some state-of-the-art prediction–
contraction methods.
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1. Introduction

Let Ω ⊆Rn be a nonempty closed convex set and F : Ω →Rn be a continuous mapping. A classical variational inequal-
ity, denoted by VI(Ω, F ), is to find a vector u∗ ∈ Ω such that(

u′ − u∗)T
F
(
u∗) ≥ 0, ∀u′ ∈ Ω. (1)

Variational inequalities play fundamental roles in diversified applications, e.g., traffic assignment, game theory, economics,
etc. (see e.g., [1,7,8,10,11,17] and references therein). Herein, we concentrate on the VI(Ω, F ) (1) with the following special
structures, i.e., the mapping F and the constraint Ω in (1) satisfy

u =
(

x
y

)
, F (u) =

(
f (x)
g(y)

)
and Ω = {

(x, y)
∣∣ Ax + B y = b, x ∈ X , y ∈ Y

}
, (2)

where X ⊆Rn1 and Y ⊆Rn2 are nonempty closed convex sets with n1 +n2 = n; A ∈Rm×n1 and B ∈Rm×n2 are full column
rank matrices; b ∈ Rm is a given vector; f : X → Rn1 and g : Y → Rn2 are monotone mappings (see Definition 1 in the
next section). Note that although we focus on the variational inequalities in vector variables, the results can be tractably
extended to the case of matrix variables. VI(Ω, F ) in (1)–(2) has been successfully employed in the recent hot-investigated
fields, e.g., signal and image processing, machine learning and statistics. Take the background extraction of surveillance video
arising from the image processing for example, the problem can be modeled as (see e.g., [2,4,19])
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min
{‖X‖∗ + τ‖Y ‖1

∣∣ X + Y = D, X ≥ 0, Y ≥ 0
}
, (3)

where D represents the observed surveillance video; X and Y denote the background and foreground, respectively; ‖ · ‖∗
denotes the nuclear norm (the sum of all singular values) which can induce the low-rank component and ‖ · ‖1 denotes
the l1 norm (the sum of absolute values of all entries) which can induce the sparse component; and τ > 0 is the trade-off
balancing the low-rank and sparsity. Theoretically, the model (3) can be cast as (1)–(2) with matrix variables (see e.g., [9]
for the relations of convex minimizations with variational inequalities)

f (X) := ∂
(‖X‖∗

)
, g(Y ) := ∂

(‖Y ‖1
)

and Ω := {
(X, Y )

∣∣ X + Y = D, X ≥ 0, Y ≥ 0
}
,

where ∂(·) :Rn → 2R
n

is the subdifferential operator (see Definition 2 in the next section).
By attaching a Lagrange multiplier λ ∈ Rm to the constraint Ax + B y = b, (1)–(2) can be reformulated as the following

variational inequality: Find w∗ ∈W , such that(
w ′ − w∗)T

Q
(

w∗) ≥ 0, ∀w ′ ∈ W, (4)

where

w =
⎛
⎝ x

y
λ

⎞
⎠ , Q (w) =

⎛
⎝ f (x) − AT λ

g(y) − BT λ

Ax + B y − b

⎞
⎠ and W = X ×Y ×Rm. (5)

The exploitable structure of VI(W, Q ) in (4)–(5) provides us the opportunities to design methods with separable algorithmic
framework, i.e., decompose the original problem as a series of small scale subproblems involving x or y only. Actually, some
classical decomposition methods have been developed and investigated in, e.g., [6,8,11–13]. The alternating direction method
of multiplier (ADMM) is the benchmark among those decomposition methods. Specifically, given wk = (xk, yk, λk) ∈ W ,
ADMM produces the next iterate wk+1 = (xk+1, yk+1, λk+1) by solving the following variational inequalities(

x′ − x
)T {

f (x) − AT [
λk − H

(
Ax + B yk − b

)]} ≥ 0, ∀x′ ∈ X , (6)(
y′ − y

)T {
g(y) − BT [

λk − H
(

Axk+1 + B y − b
)]} ≥ 0, ∀y′ ∈ Y, (7)

λk+1 = λk − H
(

Axk+1 + B yk+1 − b
)
, (8)

where H ∈Rm×m is a positive definite matrix which performs as a penalty parameter associated with the linear constraint.
Due to adequately exploiting the separable structure of VI(W, Q ) in (4)–(5), ADMM exhibits great superiority to some

state-of-the-art methods in many practical applications, e.g., signal processing, image restoration and matrix completion
(see e.g., [5,18,20,21]). The success of ADMM in these applications is mainly attributed to its resulting subproblems (6)–(7)
possessing closed-form solutions (see [5,18,20,21] for details). However, for the generic applications, if (6)–(7) have no ex-
ploitable structures to render closed-form solutions, it may be numerically intensive to be solved. To make (6)–(7) easier, He
et al. [14] developed an alternating projection method for solving VI(W, Q ) in (4)–(5). Instead of tackling (6)–(7) as vari-
ational inequalities, they utilized a projection–contraction algorithmic framework. Specifically, given wk = (xk, yk, λk) ∈W ,
the algorithm in [14] (denoted by “APP”) generates the predictor w̃k = (x̃k, ỹk, λ̃k) by

x̃k = PX

{
xk − 1

rk

(
f
(
xk) − AT [

λk − H
(

Axk + B yk − b
)])}

,

ỹk = PY

{
yk − 1

sk

(
g
(

yk) − BT [
λk − H

(
Ax̃k + B yk − b

)])}
,

λ̃k = λk − H
(

Ax̃k + B ỹk − b
)
,

where the step sizes rk and sk are selected self-adaptively (see [14] for details) to satisfy the inequalities∥∥ f
(
xk) − f

(
x̃k) + AT H A

(
xk − x̃k)∥∥ ≤ νrk

∥∥xk − x̃k
∥∥ (9)

and ∥∥g
(

yk) − g
(

ỹk) + BT H B
(

yk − ỹk)∥∥ ≤ νsk
∥∥yk − ỹk

∥∥, (10)

respectively; where ν is a parameter in (0,1).
The main computational effort of APP is the parameter selections of the step sizes rk and sk , i.e., selecting rk (resp. sk)

such that (9) (resp. (10)) is satisfied at each iteration. Computationally, the smaller the left-hand sides of (9)–(10), the more
opportunities for selecting the optimal step sizes for APP. Recently, Hu [16] proposed a modified alternating projection-based
prediction–correction method (denoted by “MAPP”) with the step sizes rk and sk being selected self-adaptively to satisfy∥∥ f

(
xk) − f

(
x̃k) + (1/2)AT H A

(
xk − x̃k)∥∥ ≤ νrk

∥∥xk − x̃k
∥∥, (11)
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