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Given a function f0 defined on the unit square Ω with values in R
3, we construct a

piecewise linear function f on a triangulation of Ω such that f agrees with f0 on the
boundary nodes, and the image of f has minimal surface area. The problem is formulated
as that of minimizing a discretization of a least squares functional whose critical points are
uniformly parameterized minimal surfaces. The nonlinear least squares problem is treated
by a trust region method in which the trust region radius is defined by a stepwise-variable
Sobolev metric. Test results demonstrate the effectiveness of the method.

© 2013 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

In [11] we introduced a trust region method in which the trust region radius is measured in the H1 Sobolev metric. The
method was shown to be equivalent to a method which blends a Newton-like iteration with a steepest descent iteration
using the Sobolev gradient and which we termed a Levenberg–Marquardt–Neuberger method. The underlying theory is
developed in [3], and the method is applied to the Navier–Stokes equations in [12], and to the Ginzburg–Landau equations
in [4]. Here we apply a variation of the method to the problem of approximating minimal surfaces. This research extends
the work began in [9]. Refer to [10] for a treatment of the analogous minimal curve length problem.

Other algorithms for constructing triangle-mesh approximations to minimal surfaces have been presented in [1,7,8],
and, more recently, in [2] and [6]. By adding a volume constraint to the surface area functional, these methods treat the
more general problem of approximating constant mean curvature surfaces, including both soap bubbles with nonzero mean
curvature and soap films with zero mean curvature (minimal surfaces). They are thus more powerful than our method but
require much more elaborate procedures to maintain stability. More precisely, at least in the case of the Plateau problem
with fixed boundary which we treat here, they alternate between updating the geometry as defined by the vertex positions
and updating the connection topology by swapping edges. Our method of parameterizing the surface makes it unnecessary
to swap edges.

In addition to treating fixed boundaries, the method of [6] also treats free boundaries constrained to lie on a fixed surface
or constrained by a fixed length, and nonmanifold boundary curves shared by more than two surface sheets. That method
treats the problem of poor mesh quality by replacing the surface area functional by an extension of a centroidal Voronoi tes-
sellation energy functional, where the extension is designed so that minimizing the functional is asymptotically equivalent
to minimizing surface area. This results in very high-quality meshes which could be advantageous for estimating differential
surface properties. The simpler more efficient method presented here, however, is sufficient for numerical simulations.
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We formulate the continuous problem in Section 2, describe the discretized problem in Section 3, discuss the solution
method in Section 4, and present test results in Section 5.

2. Sobolev space formulation

Denote the unit square by Ω = [0,1]2, and define a parametric representation of regular surfaces by

S = {
g ∈ C2(Ω,R3): g1 × g2 �= 0

}
,

where g1 and g2 denote first partial derivatives. Note that S does not include the zero function and is therefore not a linear
space. Rather, it is an infinite-dimensional manifold which will be equipped with a Riemannian metric in the form of an
f -dependent Sobolev inner product in the tangent space at each point f ∈ S . The surface area functional is

ψ( f ) =
∫
Ω

| f1 × f2|

for f ∈ S , where | · | denotes Euclidean norm in R
3. Now fix f0 ∈ S and define the linear space of compactly supported

variations

S0 = {
h ∈ C2(Ω,R3): h|∂Ω = 0

}
,

where ∂Ω denotes the boundary of Ω . A minimal surface is obtained by minimizing ψ over functions f that agree with f0
on the boundary of Ω:

ψ ′( f )h = lim
α→0

1

α

[
ψ( f + αh) − ψ( f )

] = 0

for all h ∈ S0. More precisely, a minimal surface is the image of a critical point of ψ .
Consider the least squares functional

φ( f ) = 1

2

∫
Ω

| f1 × f2|2.

This is similar in appearance but not to be confused with the Dirichlet integral of f . It was shown in [9] that critical points
of φ are critical points of ψ with f1 × f2 constant, so that the critical points are uniformly parameterized, and critical points
of ψ are, with a change of parameters, critical points of φ. In the case of minimizing curve length, the analogue of φ has
critical points corresponding to constant-velocity trajectories with zero curvature. Our computational procedure involves a
discretization of φ rather than of ψ . This has an enormous advantage in terms of avoiding degenerate triangles and the
ill-conditioning associated with widely varying triangle areas.

In order to simplify the derivation of expressions for gradients and Hessians of φ, define a nonlinear differential opera-
tor A by

A( f ) = f1 × f2

for f ∈ C2(Ω,R3) so that

φ( f ) = 1

2

〈
A( f ), A( f )

〉
L2 ,

where 〈·,·〉L2 denotes the standard inner product associated with L2(Ω,R3). Note that, since f has continuous mixed second
partial derivative f12 = f21, A′( f ) is self-adjoint on S0 in the L2 inner product:

〈
A′( f )h, g

〉
L2 =

∫
Ω

〈 f1 × h2 + h1 × f2, g〉 =
∫
Ω

〈g × f1,h2〉 + 〈h1, f2 × g〉 =
∫
Ω

−〈
(g × f1)2,h

〉 − 〈
h, ( f2 × g)1

〉

=
∫
Ω

〈
h, ( f1 × g)2 + (g × f2)1

〉 =
∫
Ω

〈h, f1 × g2 + g1 × f2〉 = 〈
h, A′( f )g

〉
L2

for all g,h ∈ S0. While A( f ) is not an element of S0, we can formally apply A′( f ) to A( f ) to obtain expressions for Fréchet
derivatives as follows:

φ′( f )h = 〈
A′( f )h, A( f )

〉
L2 = 〈

h,
[

A′( f )
]

A( f )
〉
L2 ,

and
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