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We present an a posteriori error analysis for the discontinuous Galerkin discretization
error of first-order linear symmetric hyperbolic systems of partial differential equations
with smooth solutions. We perform a local error analysis by writing the local error as
a series and showing that its leading term can be expressed as a linear combination of
Legendre polynomials of degree p and p + 1. We apply these asymptotic results to observe
that projections of the error are pointwise O(hp+2)-superconvergent in some cases. Then
we solve relatively small local problems to compute efficient and asymptotically exact
estimates of the finite element error. We present computational results for several linear
hyperbolic systems in acoustics and electromagnetism.

© 2013 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

First-order hyperbolic systems arise in many areas of continuum physics when fundamental balance laws are formulated
(such as the conservation of mass, momentum, or energy) and if other small-scale, dissipative mechanisms can be neglected.
Many of these systems can be written in symmetric form, such as Maxwell’s equations of electromagnetism, the wave
equation, and the two-dimensional Euler’s equation modeling gas dynamics.

The discontinuous Galerkin (DG) finite element method was first used to solve the neutron equation [28] and then
studied for initial-value problems for ordinary differential equations [6,27]. Cockburn and Shu [20,19,21] introduced the
Runge–Kutta discontinuous Galerkin (RKDG) to solve first-order hyperbolic systems. The solution space of DG methods con-
sists of piecewise continuous polynomial functions. As such, it can sharply capture discontinuities in the solution. They are
also locally conservative, and can handle problems with complex geometries to high order. They have a simple communica-
tion pattern between elements with a common face, which is useful for parallel computation and adaptive methods, since
it is easy to construct locally refined meshes with hanging nodes. Furthermore, they exhibit strong superconvergence that
can be used to estimate the discretization error.

A posteriori error estimates are used to guide adaptive algorithms and stop the refinement process. An ideal estimate
is (i) asymptotically correct in the sense that the error estimate in some norm approaches zero under mesh refinement at
the same rate as the actual error and (ii) computationally efficient by requiring a small fraction of the solution cost. Several
explicit a posteriori DG error estimates are known for hyperbolic problems [17,18] where upper bounds of the true error are
derived in terms of local residuals and solution jumps. Goal oriented a posteriori error estimates have also been derived for
hyperbolic systems [24,26]. Explicit error estimates are usually cheaper to use for steering adaptive refinement but can’t be
relied on to assess the solution quality since, in general, they fail to be asymptotically exact even for smooth solutions.
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Adjerid et al. [6] developed the first asymptotically correct implicit a posteriori DG error estimates, based on super-
convergence, for one-dimensional linear and nonlinear hyperbolic problems. Later, Adjerid and Massey [8,9] showed how to
construct accurate error estimates for multi-dimensional scalar problems on rectangular meshes. They showed that the lead-
ing term of error is spanned by two (p + 1)-degree Radau polynomials in the x and y directions, respectively. Krivodonova
and Flaherty [25] showed that the leading term of the local discretization error on triangles having one outflow edge is
spanned by a suboptimal set of orthogonal polynomials of degree p and p + 1. They computed DG error estimates by
solving local problems involving numerical fluxes, thus requiring information from neighboring inflow elements. Adjerid
and Baccouch [2,3] investigated DG methods on structured and unstructured triangular meshes with several finite element
spaces to compute accurate error estimates.

Several superconvergence results for DG methods are reported in the literature [2,6,9,7,14,16,15,13]. In [10], we proved
that a projection of the DG solution is O (hp+2) superconvergent at Radau points and constructed efficient a posteriori
error estimates. However, our proofs were valid for special linear symmetric hyperbolic systems in two space dimensions
satisfying the assumptions of Lemma 3.2 [10], for which either (i) at least one of the coefficient matrices A1 or A2, are
invertible, or (ii) N (Pt

1,2A2P1,2) = {0} or N (Pt
2,2A1P2,2) = {0}, where the m×(m−r) matrix P j,2, j = 1,2, denotes the matrix

of all (m − r) orthogonal eigenvectors associated with the zero eigenvalue of A j . Unfortunately, many important hyperbolic
systems such as the acoustic problem and Maxwell’s equations do not satisfy these assumptions. In this manuscript, we
show that the results in [10] hold for arbitrary linear symmetric hyperbolic systems with constant coefficient matrices
A1, . . . ,Ad in d space dimensions.

Thus, our a posteriori error estimates are implicit as they involve the solution of local problems for the error and are
asymptotically exact provided the true solution is smooth enough. However solutions of hyperbolic systems may be dis-
continuous and thus our local theory does not hold on elements containing discontinuities or other singularities. Extensive
computations suggest that the effectivity indices converge to unity under suitable adaptive mesh refinement even in the
presence of discontinuities. Furthermore, our estimators have the following properties: (i) they yield accurate estimates of
the true error in regions away from discontinuities, (ii) they underestimate the true error near singularities and in regions
polluted by it, (iii) they may be used as error indicators for steering an adaptive mesh refinement algorithm. In some pre-
liminary computations [5] we observed that an adaptive refinement strategy using an explicit error estimators for steering
the adaptive refinement while using our error estimator for stopping the adaptive process can lead to much more efficient
and robust algorithm than just using one estimator for both steering and stopping the adaptive process.

When used with a suitable adaptive algorithm our estimator tend to be asymptotically correct under adaptive mesh re-
finement in the presence of discontinuities. A possible explanation of this behavior is that the elements at the discontinuity,
which are the source of high discretization and pollution errors, are refined such that their discretization and pollution
errors are reduced to a harmless level. We also note that our error analysis does not include the effect of flux limiters and
stabilization usually needed for high-order DG methods applied to hyperbolic systems with discontinuous solutions. This as
well as the use of different numerical fluxes is currently under investigation.

This manuscript is organized as follows, in Section 2 we recall several results and preliminary results. In Section 3 we
perform a local error analysis to investigate the asymptotic behavior of the local discretization error. In Section 4 we present
our error estimation procedures and in Section 5 we present numerical results for several hyperbolic systems. We conclude
and discuss our results in Section 6.

2. Problem formulation

Let d be the space dimension, x = (x1, . . . , xd)
t the space variable defined on a domain Ω = (0,1)d ∈ R

d , and t the time
variable defined on [0, T ].

Let u : [0, T ] × Ω →R
m be the true solution of the linear symmetric hyperbolic system

∂u

∂t
+

d∑
i=1

Ai
∂u

∂xi
= g(t,x), x ∈ Ω, 0 < t < T , (2.1a)

with symmetric real constant coefficient matrices Ai ∈ R
m×m , 1 � i � d, and subject to initial and boundary conditions

u(0,x) = u0(x), x ∈ Ω, (2.1b)(
d∑

i=1

(νiAi)
−
)

u(t,x) =
(

d∑
i=1

(νiAi)
−
)

uB(t,x), x ∈ ∂Ω, 0 < t < T , (2.1c)

where ∂Ω denotes the boundary of Ω and ν denotes the unit outward normal on ∂Ω . Since symmetric matrices are
diagonalizable with real eigenvalues, we define M± for a symmetric matrix M ∈R

m×m by writing

M = P diag(λ1, . . . , λm)Pt, λ1, . . . , λm ∈R, (2.2a)

M+ = P diag
(
max(λ1,0), . . . ,max(λm,0)

)
Pt , (2.2b)
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