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The solution of the two-phase Riemann problem is a critical component of upwind finite-
volume numerical schemes used to solve systems of evolutionary equations, which are
routinely used to model compaction and combustion phenomena in gas–granular explosive
mixtures. Extensions of a common two-phase model are currently being used to analyze
the thermomechanics and combustion of explosive mixtures consisting of N components.
Although a solution to the two-phase Riemann problem has been formulated, there is
currently no available analogue for the N-phase system in the literature, due to the
inherent difficulty of determining the correct wave ordering within the Riemann solver.
The development of a solution for these systems is therefore an important step in the
formulation of numerical schemes applied to N-phase mixtures. Here, an extension of the
exact two-phase solution methodology is proposed for the N-phase case, which may be
utilized in the construction of finite-volume schemes for multiphase systems, and can be
used with general, convex equations of state. Finally, example problems for three-phase
mixtures are considered to illustrate the accuracy of the solution compared to the results
of a centered numerical scheme. These solutions also demonstrate the complexity of the
possible wave configurations that arise when multiple solid phases are present, as well as
the algorithmic challenges which must be addressed to provide a robust implementation.

© 2013 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Systems of hyperbolic partial differential equations are frequently used to analyze wave phenomena in two-phase flows
[3,2,23,24,12]. In particular, the two-phase Baer–Nunziato (BN) model [4] was formulated to study deflagration-to-detonation
transition (DDT) in granular energetic materials, where a mixture of reactant granular solid and product gas simultaneously
exist. The system of equations consists of mass, momentum, and energy balance equations for each phase, as well as a
volume fraction evolution equation required for closure. Volumetric source terms in these equations account for mass,
momentum, and energy interactions between phases due to combustion, drag, heat transfer, and compaction. In this study
we ignore phase interaction processes and focus on terms that account for nonlinear wave formation and propagation, which
can be computationally challenging to resolve. The effects of volumetric source terms can be computationally examined
separately based on standard operator splitting techniques [27].
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The one-dimensional form of the two-phase equations that accounts for nonlinear convection is given by:

∂q

∂t
+ ∂f(q)

∂x
= g(q)

∂φs

∂x
, (1)

where

q = [φsρs, φgρg, φsρsus, φgρg ug, φsρs Es, φgρg E g, φs]�, (2)

f(q) = [
φsρsus, φgρg ug, φsρsu2

s + φs P s, φgρg u2
g + φg P g, φsρsus(Es + P s/ρs),φgρg ug(E g + P g/ρg),0

]�
, (3)

g(q) = [0,0, P g,−P g, P g us,−P g us,−us]�. (4)

Here, t is time and x is spatial position. For i = s, g , φi is volume fraction; ρi is density; ui is velocity; Ei = ei + u2
i /2 is the

total specific energy, where ei is the specific internal energy, and Pi is pressure. The subscripts s and g denote the solid and
gas phases, respectively. This system is closed by equations of state (EOS’s) ei = ei(ρi, Pi) for both the gas and solid phases,
and the saturation constraint φs + φg = 1. The compaction equation convects φs at the local velocity us . Some multiphase
models convect φs at a different velocity U [24,18], such as the mass-weighted velocity of the phases. The Riemann solver
presented here is generally not applicable in such cases. The sources g(q)∂φs/∂x are referred to as nonconservative products
in the literature, and are required to satisfy the strong form of the entropy inequality for the mixture. Formulating accurate
discretizations of these products within finite-volume schemes has proven to be particularly challenging [17,6], and their
proper mathematical treatment remains an active area of research [16,11,9,22,20,21].

The two-phase BN model has been extended to include mixtures containing an arbitrary number of condensed phases
to examine the thermomechanics and combustion of multi-component energetic solids [14,28,5]. Here, the solid subscript s
is replaced by the index i, for i = 1,2, . . . , M , where M is the total number of solid phases. The gas–solid mixture consists
of N = M + 1 components, and the one-dimensional system of equations is given by:

∂q

∂t
+ ∂f(q)

∂x
=

M∑
i=1

gi(q)
∂φi

∂x
, (5)

where

q = [{φiρi}M
i=1, φgρg, {φiρiui}M

i=1, φgρg ug, {φiρi Ei}M
i=1, φgρg E g, {φi}M

i=1

]�
, (6)

f(q) = [{φiρiui}M
i=1, φgρg ug,

{
φiρiu

2
i + φi P i

}M
i=1, φgρg u2

g + φg P g,{
φiρiui(Ei + Pi/ρi)

}M
i=1, φgρg ug(E g + P g/ρg), {0}M

i=1

]�
, (7)

gi(q) = [{0}M
i=1,0, P gai,−P g, P guiai,−P g ui,−uiai

]�
. (8)

The notation {·}M
i=1 indicates a sequence of elements for i = 1,2, . . . , M , and the ai are vectors of length M such that the

j-th component aij is given by:

aij =
{

0 if j �= i,
1 if j = i.

(9)

Finite-volume numerical methods are commonly used to solve systems of hyperbolic partial differential equations such
as those given by Eqs. (1) and (5). Many of these methods are based on upwind Godunov methods, which approximate the
solution as piecewise-continuous polynomials within each computational cell. Discontinuities at cell interfaces constitute
initial states for Riemann problems that are locally solved to obtain interface fluxes needed to evolve the solutions in space
and time. Embid and Baer first analyzed the eigenstructure of the BN equations [10], and the solution of the associated
two-phase Riemann problem has been investigated by Andrianov and Warnecke [1] and Deledicque and Papalexandris [8],
with Schwendeman et al. [25] providing the first direct solution for ideal and stiffened equations of state. This solution is
also utilized in [25] to evaluate the nonconservative products analytically. However, there is currently no available solution
to the Riemann problem for Eq. (5) for M > 1, primarily due to the complexity of possible wave configurations and diffi-
culties that arise in determining their spatial order during the solution procedure. An analysis of this solution is a critical
component in the construction of upwind finite-volume numerical schemes needed to predict flows governed by Eq. (5).

In this paper, a direct solution methodology for the Riemann problem for an arbitrary number of solid phases is formu-
lated that can be used with any convex EOS. This solution can be used in the verification of numerical schemes applied to
multiphase flow problems and may provide a framework for the implementation of exact or approximate Riemann solvers
for Eq. (5) within existing upwind numerical schemes. The solution approach is based on the methodology used in [25],
and utilizes an inner Newton method to solve for the phase shock speeds and an outer Newton iteration to obtain the spe-
cific volumes. All other flow properties may be calculated from these quantities. While it is possible to eliminate the shock
speeds and solve the system of nonlinear equations with a single Newton iteration for the phase pressures, the resulting
relations include square-root terms which can make the system discontinuous in large sub-domains of R

W , where W is
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