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In the paper there is considered the Cauchy problem for an abstract nonlinear second
order evolution equation in the Hilbert space. This equation represents a generalization
of a nonlinear Kirchhoff-type beam equation. For approximate solution of this problem,
we introduce a three-layer semi-discrete scheme, where the value of the gradient in the
nonlinear term is taken at the middle point. This makes possible to reduce the finding of
the approximate solution on each time step to solution of the linear problem. It is proved
that the solution of the nonlinear discrete problem, as well as its corresponding difference
analog of the first order derivative, is uniformly bounded. For the corresponding linear
discrete problem, the high order a priori estimates are obtained using classic Chebyshev
polynomials. Based on these facts, for nonlinear discrete problem, the a priori estimates are
proved, whence the stability and error estimates of the approximate solution follow. Using
the constructed scheme, numerical calculations for various test problems are carried out.

© 2012 IMACS. Published by Elsevier B.V. All rights reserved.

0. Introduction

In the present work, we consider the following abstract nonlinear evolution equation in a Hilbert space:

d2u(t)

dt2
+ A2u(t) + a

(∥∥A1/2u
∥∥2)

Au(t) + M
(
u(t)

) = f (t),

where A is a self-adjoint, positive definite operator, M(·) is a Lipschitz continuous operator and a(s) is a linear function. This
equation (without Lipschitz continuous operator) represents a generalization of a nonlinear Kirchhoff-type beam equation
(it was obtained by S. Woinowsky-Krieger, see [31]). Our aim is to find an approximate solution of Cauchy problem for this
equation. For this purpose, we introduce a three-layer symmetric semi-discrete scheme, where the value of the gradient
in the nonlinear term of the equation is taken at the middle point. This nuance is important, since for calculation of
approximate solution on each time step, it is sufficient to inverse the linear operator.

Existence and uniqueness issues for local as well as global solutions of initial–boundary problem for a Kirchhoff string
equation were first studied by Bernstein in 1940 (see [7]). The issues of solvability of the classical and generalized Kirchhoff
equations were later considered by many authors: A. Arosio, S. Panizzi [1], L. Berselli, R. Manfrin [8], P. D’Ancona, S. Spagnolo
[14,13], R. Manfrin [18], L.A. Medeiros [20], M. Matos [19], K. Nishihara [21], S. Panizzi [22]. In the works [1,14,13,18]
and [21] issues of well-posedness and global solvability are thoroughly studied for a generalized Kirchhoff equation. In [22]
the existence of global solution with low regularity is studied for Kirchhoff-type equations.
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An abstract analog of Kirchhoff-type beam equation is considered in the work by L.A. Medeiros [20], where the exis-
tence and uniqueness theorem for the regular solution of Cauchy problem is proved. The same abstract nonlinear equation,
strengthened by first derivative with respect to time, is discussed in the works by P. Biler and E.H. Brito (see [9,10]), where
most attention is paid to study of the behavior of Cauchy problem. We should note that a participation of the square of the
main operator in the linear part of this equation essentially helps to obtain the necessary a priori estimates.

The following works are dedicated to approximate solutions of initial–boundary value problems for classical and general-
ized Kirchhoff equations: A.I. Christie, J. Sanz-Serna [12], I.S. Liu, M.A. Rincon [17], J. Peradze [23], J. Rogava, M. Tsiklauri [28].
In [23], the algorithm for approximate solution of classical Kirchhoff equation is thoroughly studied. This algorithm repre-
sents a combination of Galerkin method by spatial coordinate and finite difference time domain method.

J.M. Ball generalized the Kirchhoff beam equation by introducing damping terms, in order to account for the effect of
external and internal damping (see [6]). For approximate solution of the initial–boundary value problem for this equation,
the authors S.M. Choo, S.K. Chung in [11] suggested the finite difference method and studied the stability and convergence
issues of the corresponding discrete problem.

As far as we know, approximate solving of abstract analog of the Kirchhoff-type beam equation are less studied. In the
present work, investigation of stability and convergence of the semi-discrete scheme constructed for this equation is based
upon two facts: (a) (uk − uk−1)/τ and Auk are uniformly bounded (uk is an approximate solution, and τ is a time step);
(b) for solution of the corresponding linear discrete problem, the a priori estimate is valid, where in the left-hand side is
the main operator A with the positive power s, and in the right-hand side – As−1. The above-mentioned makes possible
to weaken the nonlinear term in the given nonlinear equation to such degree that, taking into account fact (a), we can use
Gronwall’s lemma. In addition, it is not necessary to impose any restriction on τ here.

The results of the numerical calculations of test problems are presented at the end of the work. Note that there is used
a second order accuracy three-point difference scheme with respect to the spatial coordinate. On the basis of numerical
experiments, the convergence rate of the scheme is practically ascertained and it is shown that the constructed scheme
describes well the behavior of oscillating solution.

1. Statement of the problem and semi-discrete scheme

Let us consider the Cauchy problem for an abstract equation in the Hilbert space H :

d2u(t)

dt2
+ A2u(t) + a

(∥∥A1/2u
∥∥2)

Au(t) + M
(
u(t)

) = f (t), t ∈ [0, T ], (1.1)

u(0) = ϕ0,
du(0)

dt
= ϕ1, (1.2)

where A is a self-adjoint (A does not depend on t), positive definite (generally unbounded) operator with the domain D(A),
which is everywhere dense in H , i.e. D(A) = H , A = A∗ and

(Au, u) � ν‖u‖2, ∀u ∈ D(A), ν = const > 0,

where by ‖ · ‖ and (·,·) are defined the norm and scalar product in H , respectively; scalar function a(s) = λ + s, λ > 0;
nonlinear operator M(·) satisfies Lipschitz condition; ϕ0 and ϕ1 are the given vectors from H ; u(t) is a continuous, twice
continuously differentiable, sought function with values in H and f (t) is the given continuous function with values in H .

As in the linear case (see [16, Theorem 1.5, p. 301]), the vector function u(t) with values in H , defined on the inter-
val [0, T ] is called a solution of the problem (1.1), (1.2) if it satisfies the following conditions: (a) u(t) is twice continuously
differentiable on the interval [0, T ]; (b) u(t) ∈ D(A2) for any t from [0, T ] and the function A2u(t) is continuous; (c) u(t)
satisfies Eq. (1.1) on the [0, T ] interval and the initial condition (1.2). Here continuity and differentiability is meant by met-
ric H . Existence and uniqueness of the solution of the problem (1.1), (1.2) (without Lipschitz continuous operator) is shown
in [20].

Eq. (1.1) represents an abstract analog (without Lipschitz continuous operator) of Kirchhoff-type beam equation of the
form (see [31]):

∂2u

∂t2
+ ∂4u

∂x4
−

(
λ +

L∫
0

u2
ξ (ξ, t)dξ

)
∂2u

∂x2
= f (x, t).

We seek a solution of the problem (1.1), (1.2) by the following semi-discrete scheme:

uk+1 − 2uk + uk−1

τ 2
+ A2 uk+1 + uk−1

2
+ a

(∥∥A1/2uk
∥∥2) Auk+1 + Auk−1

2
+ M(uk) = fk, (1.3)

where k = 1, . . . ,n − 1, τ = T /n (n > 1), fk = f (tk), tk = kτ , u0 = ϕ0.
As an approximate solution u(t) of problem (1.1), (1.2) at point tk = kτ , we declare uk , u(tk) ≈ uk .
Regarding the scheme (1.3), we note that to calculate the approximate solution uk (k > 2) it is necessary to inverse the

second order operator-polynomial with the positive coefficients. In case of factorization it is necessary to inverse operators
(I +αi A) (i = 1,2), where α1 and α2 are real and positive or complex conjugate numbers with positive real parts. Obviously
in this case these operators are continuously invertible as A is a self-adjoint positive definite operator.
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