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An operator-splitting method is applied to transform the population balance equation
into two subproblems: a transient transport problem with pure advection and a time-
dependent convection–diffusion problem. For discretizing the two subproblems the discon-
tinuous Galerkin method and the streamline upwind Petrov–Galerkin method combined
with a backward Euler scheme in time are considered. Standard energy arguments lead to
error estimates with a lower bound on the time step length. The stabilization vanishes in
the time-continuous limit case. For this reason, we follow a new technique proposed by
John and Novo for transient convection–diffusion–reaction equations and extend it to the
case of population balance equations. We also compare numerically the streamline upwind
Petrov–Galerkin method and the local projection stabilization method.

© 2013 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Many chemical processes, including polymerization, crystallization, cloud formation, and cell dynamics can be described
by population balance equations. Hence, their simulation is required in various applications. A special example is the pre-
cipitation process which involves chemical reactions in a flow field. Such processes are modeled by a population balance
system [14], consisting of the Navier–Stokes equations for describing the flow field, convection–diffusion problems for de-
scribing the chemical reactions, and transport equations for the particle size distribution (PSD). The set of these equations
is strongly coupled. Hence, inaccuracies in the concentration of one species directly affects the concentration of all other
species. In addition to the coupling of these equations, the main difficulty in simulation is that the PSD depends not only
on space and time but also on the properties of particles referred to as internal or property coordinates. Consequently, the
dimension of the equation of the PSD is higher than the dimensions of the other equations in the system.

In order to overcome the curse of dimensionality associated with the equation of PSD, we proposed in [1] an operator-
splitting scheme. The operator-splitting method reduces the original problem with respect to internal and external directions
into a transient transport problem with pure advection and a time-dependent convection–diffusion problem. In applications,
most of the problems are convection-dominated and the solution obtained by standard finite element methods exhibit
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nonphysical oscillations. In this case, stabilization techniques are required in order to get physically sound numerical ap-
proximations. In [1], the local projection stabilization (LPS) method has been used to stabilize the space discretization
combined with a discontinuous Galerkin (dG) method in the internal coordinate to get the error estimates of the two-step
method.

The choice of stabilization parameters plays a critical role in the success of the stabilized methods. The standard tech-
niques to get error estimates for residual based stabilization methods for unsteady convection–diffusion–reaction problems
lead to lower bounds on the time step length. The stabilization vanishes in the time-continuous limit. This time step re-
striction does not appear when stabilization methods like LPS [1,2] are used. Recently in [12], John and Novo presented a
new technique for the case of time-independent coefficients which allows to get the same error estimates without time step
restriction. In this paper, we show that this technique can be extended to the case of population balance equations.

Stabilized finite element methods for time-dependent convection–diffusion–reaction problems have been investigated by
many authors. The stability property of consistent stabilization methods in the small time step limit have been discussed
in [3,10]. The approach in these studies was to discretize the time-dependent problem in space first and the stabilization
is introduced in the semi-discrete problem by using residuals of the time-dependent partial differential equation. Then the
stabilization parameters are chosen for the semi-discrete problem. The stabilized semi-discrete problem is then discretized
in time by a suitable time-stepping scheme. This procedure results in stabilization parameters that depend only on the mesh
width in space since the temporal discretization is performed after the choice of the stabilization parameters. The stability
and convergence properties of the SUPG method in space combined with the backward Euler method, the Crank–Nicolson
scheme or the second order backward differentiation formula in time for transient transport problem have been studied
in [4]. Error bounds in the L2-norm and in the norm of material derivative are obtained under regularity conditions on the
data and the stabilization parameters depend only on the mesh size in space. For non-smooth data the bounds are valid
if the stabilization parameters are chosen in dependence of the length of the time step. Numerical studies of the different
stabilization techniques and a comparison including SUPG method can be found in [7,17].

On the other hand, if the stabilization parameters are chosen after discretizing the problem in space and time, see [12,
13], then, the stabilization parameters will depend on the time step length. A detailed study of SUPG methods for transient
convection–diffusion–reactions equation has been given in [12]. It is shown in the first part of the paper that a finite element
discretization in space combined with a backward Euler scheme in time leads to two different choices of stabilization
parameters, both depending on the length of the time step. Stability and error estimates are obtained for both choices of
stabilization parameters. It is also observed that the stabilization parameters tend to zero as the time step length approaches
zero. Furthermore, a special problem where velocity field and reaction do not depend on time has been considered in the
second part of the paper. The stabilization parameters are chosen similar to that in the steady-state case. Under certain
regularity of the solution, the second part of [12] extended the analysis of [4] and derived error estimates for the L2-
norm and the norm of the material derivative with the standard order of convergence. Moreover, an error estimates in
the norm of the streamline derivative has been established. The analysis has also been extended to the fully discrete case
where backward Euler and Crank–Nicolson methods are used for time discretization. Numerical studies presented in [12,13]
show that this approach leads to solutions which contain nonphysical oscillations for small time steps compared with the
approach from [3,10].

Other results concerning the analysis of stabilized finite element methods for time-dependent convection–diffusion–
reaction equations can be found in the literature. We refer to [7,17] which consider different stabilizing techniques including
SUPG. Symmetric stabilization in space combined with the θ -scheme and the second order backward differentiation formula
have been considered in [5]. The analysis of discontinuous Galerkin (dG) in time combined with local projection stabilization
(LPS) in space has been studied in [2] and in space and time in [9].

The second subproblem in our splitting method is a transport problem with pure advection, so one suitable choice is to
approximate it by the discontinuous Galerkin (dG) finite element method [1]. The dG method was first introduced for the
neutron transport problem in [19] and then analyzed in [16]. The theoretical analysis of the dG method for scalar hyperbolic
equations can be found in [15] and for the space–time dG finite element method in [9]. For an introduction to dG method
we refer to [6].

The main focus of the paper consists in deriving error estimates for operator-splitting methods of population balance
equations in which the stabilization parameters do not depend on the length of the time step. In particular, we combine
the SUPG method in space with the dG method in internal coordinate. For time discretization, a backward Euler time
stepping scheme is used. Under certain regularity of the solution, we extend the analysis of [12] to the two-step method of
population balance equations and derive error estimates without a lower bound on the time step length. Furthermore, we
compare the numerical results with the results obtained by LPS method in space [1].

The remainder of this paper is organized as follows: Section 2 introduces the problem under consideration and the
operator-splitting scheme. The SUPG method in space and dG in internal coordinate are introduced in Section 3. In Section 4,
the two subproblems are discretized in time using the backward Euler time-stepping scheme. We derive stability estimates
for the two-step method and error estimates are given for two different choices of stabilization parameters. Furthermore,
error estimates in which the stabilization parameters are independent of the time step length are given. Section 5 presents
the combination of LPS in space and dG in internal coordinate. Numerical results illustrating the theory are reported in
Section 6 and some conclusions are given in Section 7.
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