
Applied Numerical Mathematics 60 (2010) 816–832

Contents lists available at ScienceDirect

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

A new stabilized finite element method for shape optimization in
the steady Navier–Stokes flow ✩

Zhiming Gao a,∗, Yichen Ma b

a Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009-26, Beijing, 100088, PR China
b School of Science, Xi’an Jiaotong University, Shaanxi, 710049, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 April 2009
Received in revised form 12 April 2010
Accepted 17 April 2010
Available online 6 May 2010

Keywords:
Discrete adjoint method
Shape optimization
Stabilized finite element method
Gradient algorithm
Navier–Stokes equations

This paper investigates shape optimization of a solid body located in Navier–Stokes flow
in two dimensions. The minimization problem of total dissipated energy is established
in the fluid domain. The discretization of Navier–Stokes equations is accomplished using
a new stabilized finite element method which does not need a stabilization parameter
or calculation of high order derivatives. We derive the structures of discrete Eulerian
derivative of the cost functional by a discrete adjoint method with a function space
parametrization technique. A gradient type optimization algorithm with a mesh adaptation
technique and a mesh moving strategy is effectively formulated and implemented.

© 2010 Published by Elsevier B.V. on behalf of IMACS.

1. Introduction

The optimal shape design of a body subjected to the minimum viscous dissipated energy has been a challenging task
for a long time, and it has been investigated by several authors. For the computation of such problems, the gradient type
optimization algorithms with adjoint methods are mostly utilized. Different methods exist to obtain the Eulerian derivative
of the cost functional. For instance, Pironneau in [21,23] computes the derivative of the cost functional using normal varia-
tion approach; Murat and Simon [22] use the formal calculus to deduce an expression for the derivative; Bello et al. in [2,3]
considered this problem theoretically in the case of Navier–Stokes flow by the formal calculus.

Based on the order of discretization and derivation of the adjoint equations, the adjoint method can be classified as
continuous adjoint method and discrete adjoint method, or optimize-then-discretize method and discretize-then-optimize
method. In the continuous adjoint method, one obtains the adjoint equations at the continuous level and then discretize
the result; in the discrete adjoint method, one first discretizes the continuous state equations to obtain a set of discrete
state equations and then differentiates the discrete approximate state equations to obtain the discrete adjoint equations. It
is pretty common for stabilized methods that the discretization of the optimality conditions and the optimization of the
discrete problem are not equivalent (see [4,6]). The shape gradients obtained by the two methods are not the same, but as
the grid sizes go to zero, discrete adjoint variables and shape gradients of the discretized cost functionals all converge to the
same solution. The discrete adjoint method constructs an exact gradient of the discretized cost functional and therefore there
do not arise the inconsistencies between the computed gradient and the discretized functional. For the detailed discussion
about the two methods, see Gunzburger [15]. Recently, Yagi and Kawahara in [29,30] study the optimal shape design for
Navier–Stokes flow with boundary conditions containing the pressure using a discrete adjoint approach. However, their
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proposed algorithm converges slowly. Katamine et al. [18] use the continuous adjoint approach with the formula of material
derivative to study such problem involving velocity–pressure type boundary conditions with Reynolds number up to 100.
Gao et al. [12–14] employ the continuous adjoint method to study shape sensitivity analysis for Stokes and Navier–Stokes
flows.

In this paper, a gradient type optimization algorithm for steady Navier–Stokes flows with a discrete adjoint method
and function space parametrization technique is proposed and implemented in two dimensions. A new stabilized finite
element formulation is utilized for solving Navier–Stokes equations. It is based on two local Gauss integrations by using
the lowest equal order pair of finite elements. The new method has some advantages: stabilization parameter-free, avoiding
the calculation of high order derivatives (see He and Li [16,19] and references therein). For the study of the discrete shape
gradient of the discretized cost functional, we will use the function space parametrization technique introduced by Delfour
and Zolésio [9]. An unstructured triangular grid is utilized for complex geometries, a mesh adaptation technique and mesh
movement strategy are employed during the optimization cycle. Finally, we present some numerical results and compare
them for different values of the Reynolds number and various stabilized element pairs. The stabilized method is about 20%
more efficient than MINI and Taylor–Hood elements.

In conclusion, the main advantages of our method are as follows:

• The stabilization term in our method can avoid the requirement of the inf–sup condition, and we only need to use low
order elements.

• During the optimization, the formulae including the stabilization term are easy to code.
• Our optimization has less computational cost than optimizations using other stabilized methods such as SUPG, PSPG,

and so on.

This paper is organized as follows. In Section 2, we briefly recall the velocity method and give the description of the
shape minimization problem for Navier–Stokes flow. Section 3 is devoted to the computation of the discrete shape gradient
of the discretized cost functional. Finally in Section 4, we propose a gradient type algorithm with some numerical examples.
Conclusion follows.

2. Preliminaries and statement of the problem

2.1. Domain perturbation

We first recall the velocity method (see Cea [5] and Zolesio [8,9,32]) to generate domain perturbations for smooth
domains Ω . The displacement of the point X ∈ Ω is governed by the differential system

dx

dt
(t, X) = V

(
t, x(t)

)
, x(0, X) = X,

which generates a transformation Tt(V ) defined as Tt(X) = x(t). We denote the “transformed domain” Tt(V )(Ω) by Ωt(V )

at t � 0.
Let J (Ω) be a real-valued functional associated with any regular domain Ω , we say that the functional J (Ω) has a

Eulerian derivative at Ω in the direction V if the limit

lim
t↘0

1

t

[
J (Ωt) − J (Ω)

] := d J (Ω; V )

exists. Furthermore, if the map V �→ d J (Ω; V ) : C([0, τ ]; [Dk(RN )]N ) → R is linear and continuous, we say that J is shape
differentiable at Ω . In the distributional sense we have

d J (Ω; V ) = 〈∇ J , V 〉(Dk(RN )N )′×Dk(RN )N . (1)

When J has a Eulerian derivative, we say that ∇ J is the shape gradient of J at Ω .
In the discrete level, in order to transport base functions on Ω onto the base functions on Ωt , we should use a reference

element for the definition of the transformation Tt . Denote by Th a triangulation of Ω . Let K be any triangle with vertices
ai , i = 1,2,3. Let P1 denote the set of all polynomials in two variables of degree � 1. There exists a unique invertible affine
mapping

F K : x̂ ∈ R
2 → F K (x̂) = B K x̂ + bK ,

where B K is an invertible 2 × 2 constant matrix and bK a vector in R
2. We then have

F K (âi) = ai, i = 1,2,3,

where âi are the vertices of the associated reference triangle element K̂ .
Now we can define the transformation Tt by using the reference element
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