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1. Introduction

The sparse representation of functions via a linear combination of a small number of basic functions has recently received
a lot of attention in several mathematical fields such as approximation theory [19,36,41,42] as well as signal and image
processing [7,9-13,15,22-28]. In terms of representations of functions, we can describe the problem as follows. Consider a
linearly dependent set of n functions ¢;, i=1,2,...,n (adictionary [16]) and a function f represented as

f=Y xi¢i
i=1

Since the set of functions is not linearly independent, this representation is not unique and we may want to determine
the sparsest representation, i.e., a representation with a maximal number of vanishing coefficients among x1, ..., X;. In the
setting of numerical linear algebra, this problem can be formulated as follows. Consider a linear system
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®x=Dh, (1)

with @ e R™", where m < n and b € R™. The columns of the matrix @ and the right-hand side b represent the functions ¢;
and the function f, respectively, with respect to some basis of the relevant function space. The problem is then to find the
sparsest possible solution %, i.e., x has as many zero components as possible. This optimization problem is in general NP-hard
[30,37]. Starting from the work of [15], however, a still growing number of articles have developed sufficient conditions that
guarantee that an (approximate) sparse solution X to (1) can be obtained by solving the linear program

min [x[{, st @®x=b (or||@x—b| <¢),

which can be done in polynomial time, see [34,35] and [33] for a discussion. We will give a brief survey of this theory in
Section 2.2.

In the literature, the development has mostly focused on the construction of appropriate coding matrices @ that allow
for the sparse representation of a large class of functions (signals or images). Furthermore, properties of the columns of
the matrix (or the dictionary) have been investigated, which guarantee that the computation of the sparse solution can be
done efficiently via a linear programming approach, see, for instance, [13,24] and [33] with its references. Often the term
compressed sensing is used for this approach.

In this paper we consider a related but different problem. We are interested in the numerical solution of partial differ-
ential equations

Lu=f,

with a differential operator L, to be solved in a domain £2 c R? with smooth boundary I and appropriate boundary
conditions given on I.

Considering a classical Galerkin or Petrov-Galerkin finite element approach, see e.g. [5], one seeks a solution u in some
function space U (which is spanned by ¢1, ..., ¢n), represented as

u :Zu,-qbi. (2)
i=1

Again we are interested in sparse representations with a maximal number of vanishing coefficients u;. In contrast to the
cases discussed before, here we would like to construct the space U and the basis functions ¢; in the finite element
discretization in such a way that first of all a sparse representation of the solution to (2) exists and second that it can be
determined efficiently. Furthermore, it would be ideal if the functions ¢; could be constructed in a multilevel or adaptive
way.

The usual approach to achieve this goal is to use local a posteriori error estimation to determine where a refinement,
i.e,, the addition of further basis functions is necessary. For example, in the dual weighted residual approach [3] this is done
by solving an optimization problem for the error.

In this article, we examine the possibility to use similar approaches as those used in compressed sensing, i.e., to use
£1-minimization and linear programming to perform the adaptive refinement in the finite element method in such a way
that the solution is sparsely represented by a linear combination of basis functions. In order to achieve this goal, we propose
the following framework.

We determine u € U as the solution of the weak formulation

(v,Lu— f)=0 forallveV.

Here, V is a space of test functions and (-,-) is an appropriate inner product. In the simplest version of a two-level approach,
we construct finite-dimensional spaces of coarse and fine basis functions U} C U’l\’ c U and corresponding spaces for coarse
and fine test functions V7 C V’f’ C V. Then we determine the sparsest solution in U¥, such that

(v,Llu—f)=0 forallveVN\ V"

via the solution of an underdetermined system of the form (1). Based on the sparse solution, we determine new coarse and
fine spaces U C Ug’ cU, Vjc VQ’ C 'V, and iterate this procedure (see Section 3.2).

This framework combines the ideas developed in compressed sensing with well-known concepts arising in adaptive
and multilevel finite element methods [18]. But instead of using local and global error estimates to obtain error indicators
by which the grid refinement is controlled, here the solution of the £;-minimization problem is used to control the grid
refinement and adaptivity.

Many issues of this approach have, however, not yet been resolved, in particular, the theoretical analysis of this approach
(see Section 4). We see the following potential advantages and disadvantages of this framework. On the positive side,
the ¢;-minimization approach allows for an easy automation. We will demonstrate this with some numerical examples in
Section 5. On the downside, the analysis of the approach seems to be hard even for classical elliptic problems, see Section 4
and due to the potentially high complexity of the linear programming methods this approach will only be successful, if the
procedure needs only a few levels and a small sparse representation of the solution exists, see Section 5.
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