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This paper is concerned with bounds on the remainder term of the Gauss–Turán
quadrature formula,

Rn,s( f ) =
1∫

−1

f (t)w(t)dt −
n∑

ν=1

2s∑
i=0

λi,ν f (i)(τν),

where

w(t) = wn,�(t) = [
Un−1(t)/n

]2�(
1 − t2)�−1/2

(� ∈ N),

Un−1 denotes the (n − 1)th degree Chebyshev polynomial of the second kind and f is a
function analytic in the interior of and continuous on the boundary of an ellipse with foci
at ±1 and the sum of semi-axes � > 1.

© 2009 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Let w be an integrable (nonnegative) weight function on the interval (−1,1), n ∈ N and s ∈ N0. It is well known that
Gauss–Turán quadrature formula with multiple nodes,

1∫
−1

f (t)w(t)dt =
n∑

ν=1

2s∑
i=0

λi,ν f (i)(τν) + Rn,s( f ), (1.1)

is exact for all algebraic polynomials of degree at most 2(s + 1)n − 1. The nodes τν in (1.1) must be zeros of the correspond-
ing s-orthogonal polynomials πn = πn,s satisfying the following orthogonality conditions

1∫
−1

πn(t)
2s+1tk w(t)dt = 0, k = 0,1, . . . ,n − 1.

Gauss–Turán quadrature formulae, or quadrature formulae with the highest degree of algebraic precision with multiple
nodes, have extensively been studied in the last decades from both an algebraic and numerical point of view. Numerically
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stable methods for constructing nodes τν and coefficients λi,ν can be found in [12] and [17]. Some interesting theoretical
results concerning this theory have recently been obtained (see [16] (and references therein), [7,15]).

Let Γ be a simple closed curve in the complex plane surrounding the interval [−1,1] and let D be its interior. If
integrand f is analytic on D and continuous on D, then the remainder term Rn,s in (1.1) admits the contour integral
representation

Rn,s( f ) = 1

2π i

∮
Γ

Kn,s(z) f (z)dz. (1.2)

The kernel is given by

Kn,s(z; w) = ρn,s(z; w)

[πn,s(z)]2s+1
, z /∈ [−1,1], (1.3)

where

ρn,s(z; w) =
1∫

−1

[πn,s(t)]2s+1

z − t
w(t)dt.

The modulus of the kernel is symmetric with respect to the real axis, i.e., |Kn,s(z)| = |Kn,s(z)|. If the weight function w
is even, the modulus of the kernel is symmetric with respect to both axes, i.e., |Kn,s(−z)| = |Kn,s(z)| (see [8, Lemma 2.1]).

The integral representation (1.2) leads to a general error estimate, by using Hölder’s inequality,

∣∣Rn,s( f )
∣∣ = 1

2π

∣∣∣∣
∮
Γ

Kn,s(z) f (z)dz

∣∣∣∣ � 1

2π

(∮
Γ

∣∣Kn,s(z)
∣∣r |dz|

)1/r(∮
Γ

∣∣ f (z)
∣∣r′ |dz|

)1/r′

, (1.4)

i.e.,

∣∣Rn,s( f )
∣∣ � 1

2π
‖Kn,s‖r‖ f ‖r′ , (1.5)

where 1 � r � +∞, 1/r + 1/r′ = 1, and

‖ f ‖r :=
{

(
∮
Γ

| f (z)|r |dz|)1/r, 1 � r < +∞,

maxz∈Γ | f (z)|, r = +∞.

The case r = +∞ (r′ = 1) gives

∣∣Rn,s( f )
∣∣ � 1

2π

(
max
z∈Γ

∣∣Kn,s(z)
∣∣)‖ f ‖1, (1.6)

whereas for r = 1 (r′ = +∞) we have

∣∣Rn,s( f )
∣∣ � 1

2π

(∮
Γ

∣∣Kn,s(z)
∣∣ |dz|

)
‖ f ‖∞. (1.7)

It is possible to obtain error bounds of the type (1.6) and (1.7) analytically (i.e., to calculate maxz∈Γ |Kn,s(z)| or∮
Γ

|Kn,s(z)| |dz|) only for weight functions which admit explicit Gauss–Turán quadrature formulae, i.e., in the cases when
explicit formulae for corresponding s-orthogonal polynomials are known. There are only a couple of them.

In 1930, S. Bernstein [1] showed that the monic Chebyshev polynomial T̂n(t) = Tn(t)/2n−1 minimizes all integrals of the
form

1∫
−1

|πn(t)|k+1

√
1 − t2

dt (k � 0).

This means that the Chebyshev polynomials Tn are s-orthogonal on (−1,1) for each s � 0. Ossicini and Rosati [14] found
three other weight functions wk(t) (k = 2,3,4),

w2(t) = (
1 − t2)1/2+s

, w3(t) = (1 + t)1/2+s

(1 − t)1/2
, w4(t) = (1 − t)1/2+s

(1 + t)1/2
,

for which the s-orthogonal polynomials can be identified as Chebyshev polynomials of the second, third, and fourth kind:
Un , Vn , and Wn , which are defined by
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