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In this paper we consider numerical solution methods for two dimensional Fredholm
integral equation of the second kind

f (x, y) −
1∫

−1

1∫
−1

a(x, y, u, v) f (u, v)du dv = g(x, y), (x, y) ∈ [−1,1] × [−1,1],

where a(x, y, u, v) is smooth and g(x, y) is in L2[−1,1]2. We discuss polynomial
interpolation methods for four-variable functions and then use the interpolating polynomial
to approximate the kernel function a(x, y, u, v). Based on the approximation we deduce
fast matrix-vector multiplication algorithms and efficient preconditioners for the above
two dimensional integral equations. The residual correction scheme is used to solve the
discretization linear system.

© 2009 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Many problems in engineering and mechanics can be transformed into two dimensional Fredholm integral equations
of the second kind. For example, it is usually required to solve Fredholm integral equations in the calculation of plasma
physics [11]. There are many works on developing and analyzing numerical methods for solving Fredholm integral equations
of the second kind (see [1–4,6,10]).

In recent years, a number of algorithms for the fast numerical solution of integral equations of the second kind have
been developed; see, e.g., [1,8,13,14,18–20]. The fast multipole method proposed in [13] combines the use of low-degree
polynomial interpolation of the kernel functions with a divide-and-conquer strategy. For kernel functions that are Coulombic
or gravitational in nature, it results in an order O(N) algorithm for the matrix-vector multiplications, where N is the number
of quadrature points used in the discretization. In [8], an O(N log N) algorithm was developed by exploiting the connections
between the use of wavelets and their applications on Calderon–Zygmund operators. In [18], we proposed an approximation
scheme to obtain low rank approximation of the discretization matrix. By using preconditioned iterative methods such as
the residual correction (RC) scheme or the preconditioned conjugate gradient (PCG) method, the total cost for solving the
integral equation with smooth kernel is O(N) operations (ops).

The papers [14,19,20] are concerned with fast algorithms for two dimensional integral equations with weakly singular
kernel functions. In [14] and [19], different versions of fast multipole methods are proposed to solve integral equations with
weakly singular kernels. In [20], the authors developed a fast wavelet collocation method for the integral equations defined
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on polygons. Besides fast algorithms, there are many investigations on improving the accuracy of numerical solutions, see
for instance [15] and [21]. In [15], a Nyström method for two dimensional Fredholm integral equation of second kind was
used. The asymptotic expansion of numerical solution is obtained and then the Richardson extrapolation method is used to
enhance the precision of the numerical solution. In [21], based on the finite-element solution, an iterative correction method
was proposed. It shows that if the kernel function is smooth, the precision could be improved considerably.

In this paper, we consider the numerical solution of two dimensional Fredholm integral equation of the second kind with
smooth kernel:

f (x, y) −
1∫

−1

1∫
−1

a(x, y, u, v) f (u, v)du dv = g(x, y), (x, y) ∈ [−1,1] × [−1,1], (1.1)

where the kernel function a(x, y, u, v) is smooth in [−1,1]4, the unknown function f (x, y) and the right-hand side function
g(x, y) are in L2[−1,1]2. For the case where the integration domain is not [−1,1]2, say [α,β]2, we can use the linear
transformation{

x′ = (2x − α − β)/(β − α),

y′ = (2y − α − β)/(β − α)

to transform the domain into [−1,1]2.
We discretize the equation by using certain numerical quadrature. Let −1 � t(N)

1 < t(N)
2 < · · · < t(N)

N � 1 be the quadrature

points and w(N)
i , i = 1,2, . . . , N , be the corresponding weights, a numerical quadrature is defined as

1∫
−1

f (t)dt ≈
N∑

i=1

w(N)
i f

(
t(N)

i

)
. (1.2)

Typical examples include Gaussian rules, repeated Gaussian rules, and repeated Newton–Cotes rules, etc., see for instance
[10]. Extending the above formula to two dimensional case, we get the following approximate system for (1.1):

f (x, y) −
N∑

i=1

N∑
j=1

w(N)
i w(N)

j a
(
x, y, t(N)

i , t(N)
j

)
f
(
t(N)

i , t(N)
j

) = g(x, y), x, y ∈ [−1,1].

In particular, we get the discretization linear system of (1.1):

(I − AW̃ )f = g, (1.3)

where f and g are vectors obtained by reordering the matrices [ f (t(N)
i , t(N)

j )]N
i, j=1 and [g(t(N)

i , t(N)
j )]N

i, j=1 row-by-row respec-

tively, I is the identity matrix, W̃ = W ⊗ W with W the weight matrix diag(w(N)
1 , w(N)

2 , . . . , w(N)
N ), and

A =

⎛
⎜⎜⎜⎜⎜⎝

A(1,1) A(1,2) · · · A(1,N)

A(2,1) A(2,2) · · · A(2,N)

.

.

.
.
.
.

. . .
.
.
.

A(N,1) A(N,2) · · · A(N,N)

⎞
⎟⎟⎟⎟⎟⎠ (1.4)

with A(i, j) = [a(t(N)
i , t(N)

l , t(N)
j , t(N)

m )]N
l,m=1. Here ⊗ denotes the Kronecker tensor product.

To solve the linear system (1.3) by classical direct methods such as Gaussian elimination method requires O(N6) opera-
tions (ops). For iterative methods such as the conjugate gradient (CG) method (see [12]), each iteration requires O(N4) ops.
Therefore even for well-conditioned problems, the CG method requires O(N4) ops, which for large-scale problems is often
prohibitive.

In this paper, we propose a fast numerical solution method for the linear system (1.3) by using the polynomial interpo-
lation technique. That is, rather than solving the discretization linear system (1.3), we solve a Nyström approximation of the
following equation

f [n](x, y) −
1∫

−1

1∫
−1

an(x, y, u, v) f [n](u, v)du dv = g(x, y), −1 � x, y � 1, (1.5)

where an(x, y, u, v) is an interpolation based approximation to a(x, y, u, v) in which n Chebyshev nodes are used in each
space variable. More precisely, we solve the following approximation equation of (1.3):

(I − Aa W̃ )f[n] = g, (1.6)
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