
Applied Numerical Mathematics 57 (2007) 1081–1096

www.elsevier.com/locate/apnum

Monotone iterative technique for numerical solutions of fourth-order
nonlinear elliptic boundary value problems ✩

Yuan-Ming Wang a,b

a Department of Mathematics, East China Normal University, Shanghai 200062, People’s Republic of China 1

b Division of Computational Science, E-Institute of Shanghai Universities, Shanghai Normal University,
Shanghai 200234, People’s Republic of China

Available online 14 November 2006

Abstract

This paper is concerned with finite difference solutions of a class of fourth-order nonlinear elliptic boundary value problems. The
nonlinear function is not necessarily monotone. A new monotone iterative technique is developed, and three basic monotone itera-
tive processes for the finite difference system are constructed. Several theoretical comparison results among the various monotone
sequences are given. A simple and easily verified condition is obtained to guarantee a geometric convergence of the iterations.
Numerical results for a model problem with known analytical solution are given.
© 2006 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Boundary value problems of fourth-order differential equations have been given considerable attention in the lit-
erature, and most of the discussions are devoted to the existence, uniqueness, and multiplicity of solutions for the
following two-point boundary value problem:{

u(iv) = f (x,u,u′′), 0 < x < 1,

u(0) = u(1) = 0, u′′(0) = u′′(1) = 0,
(1.1)

where f (x,u,u′′) is, in general, a nonlinear function of u and u′′ (cf. [1,2,7,11,12,16,18,19,28,32,36]). The above
problem describes the static deflection of an elastic bending beam (with hinged ends) under a possible nonlinear
loading (cf. [14,31]). It also describes the steady state of a prototype equation for phase transitions in condensed matter
systems (cf. [13,33]), and is also useful in studying travelling waves in a suspension bridge (cf. [15,20]). In recent
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years, attention has been given to the following fourth-order elliptic boundary value problem in a multidimensional
domain and with the more general boundary condition:{

�(k(x)�u) = f (x,u,�u), x ∈ Ω,

B[u] = g(x), B[k�u] = g∗(x), x ∈ ∂Ω,
(1.2)

where Ω is a smooth bounded connected domain in Rn with boundary ∂Ω , � is the Laplace operator, and

B[w] ≡ α0∂w/∂ν + β0(x)w

with ∂/∂ν denoting the outward normal derivative on ∂Ω (cf. [9,20,21,23,24,27,30]). It is assumed that f (x,u, v),
g(x), g∗(x), and β0(x) are continuous functions in their respective domains, k(x) is a strictly positive C2-function on
Ω ≡ Ω ∪ ∂Ω , and either α0 = 0, β0(x) ≡ 1 (Dirichlet boundary condition) or α0 = 1, β0(x) � 0 (Neumann or Robin
boundary condition). A physical interpretation of (1.2) for the case n = 2 is that it governs the static deflection of a
plate under a lateral loading. Here k(x) is the stiffness of the plate, g(x) and g∗(x) are possible boundary sources, and
f (x,u,�u) is the loading function, which may depend on the deflection and the curvature of the plate (cf. [31]).

The most discussions in the literature for (1.2) are again concerned with the existence, uniqueness, and multiplicity
of solutions (cf. [9,20,21,23,30]). On the other hand, there are also a few papers that are devoted to the numerical
methods for the computation of the solution but mostly for specific problems and linear equations (cf. [4,8,17]). For
the general nonlinear problem (1.2), a finite difference-monotone iterative method is given in [24], where the prob-
lem (1.2) is discretized by the finite difference method, and three pointwise monotone iterative schemes are given to
the corresponding nonlinear finite difference system. Another approach is given in [27], where two types of block
monotone iterations, called block Jacobi and block Gauss–Seidel monotone iterations, are presented for the computa-
tion of solutions of the finite difference system. These block monotone iterations improve the rate of convergence of
the pointwise monotone iterations given in [24] and can be easily computed by well-known computational algorithms
for linear algebraic systems such as the Thomas algorithm (cf. [3,6]). However, the monotone convergence of the
iterations in these works requires the monotone property of the nonlinear function f (·,u, v) in u. In this paper, we
give a further investigation for the case where the nonlinear function f (·,u, v) is not necessarily monotone in u.

By formulating problem (1.2) as a coupled system of two second-order elliptic equations, we discretize the cor-
responding nonlinear equations into a system of nonlinear algebraic equations by the finite difference method. Our
specific goal is to develop some pointwise monotone iterative schemes for the corresponding nonlinear finite differ-
ence system without any monotone requirement on the function f (·,u, v), including some comparisons and estimates
for the rate of the convergence of the iterations. The removal of the monotone requirement on f (·,u, v) leads to a
general computational algorithm for the numerical solutions of problem (1.2). Block Jacobi and block Gauss–Seidel
monotone iterations for the nonmonotone function f (·,u, v) can be similarly developed.

The outline of the paper is as follows. In Section 2, we discretize the elliptic boundary value problem (1.2) into a
coupled system of nonlinear finite difference equations. In Section 3, we develop a new monotone iterative technique
for the computation of the finite difference solutions by the method of upper and lower solutions for nonmonotone
function f (·,u, v). Three basic pointwise monotone iterative schemes are constructed and the monotone convergence
of the iterations to a unique finite difference solution is proved. Section 4 is devoted to the rate of convergence of the
iterations. We give several theoretical comparison results among the various monotone sequences, and obtain a simple
and easily verified condition to guarantee a geometrically fast rate of convergence. In Section 5, we present some
numerical results for a model problem with known analytical solution. These numerical results demonstrate theoretical
analysis results and compare well with the known analytical solution. The final section is for some concluding remarks.

2. The finite difference system

To obtain a finite difference approximation for the boundary value problem (1.2) we let v = −k�u and transform
problem (1.2) into the coupled system of the second-order elliptic equations:{−�u = v/k, −�v = f (x,u,−v/k), x ∈ Ω,

B[u] = g(1)(x), B[v] = g(2)(x), x ∈ ∂Ω,
(2.1)

where g(1)(x) = g(x) and g(2)(x) = −g∗(x). It is obvious that u is a solution of (1.2) if and only if (u, v) is a solution
of (2.1).
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