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Abstract

We show uniform decrease in energy error for an hp-adaptive algorithm with automatic hp selection on the elliptic model
boundary value problem. The result is based on a new marking strategy for the finite element refinement. In case of a solution with
algebraic singularity we demonstrate that we achieve the known theoretical optimal error behavior.
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1. Introduction

The Finite Element Method is a flexible tool for the numerical solution of partial differential equations. One of
the interesting features is the concept of a posteriori error estimation and adaptation of the finite element space to
the solution [21,1]. The performance of the method can be improved either by mesh refinement (h refinement) or
the use of higher order ansatz spaces (p refinement). Taking a combination of both methods (hp refinement) can
lead to exponentially fast convergence with respect to the degrees of freedom [9–11], [19, Chapter 4.5]. This has
been proved und numerically verified for several classes of problems. It is qualitatively clear where to perform h

refinement and where p refinement and there are also a priori rules known for special cases [11]. However, one wants
to find adaptive strategies for hp refinement that recovers the optimal exponential convergence behavior using only a
posteriori information. Various such strategies have been suggested, e.g., [17,14,2,18,15,7,13]. The method proposed
here is similar to the one used in [18], but we use a different marking procedure. Moreover, we can give an analysis that
proves that this algorithm will lead to a uniform monotone decrease of the energy error in every step. This has not been
proved before for an a posteriori strategy. Note that convergence of the algorithm does of course not imply optimal
complexity of the algorithm. However, in a case of a solution with a singularity, the sequence of the numerically
obtained errors follow the exponential law that is known to be the best one. Proving optimality is still an unsolved
problem, but showing convergence is a first step in this direction.
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The main results of this paper are formulated in one space dimension. Many of the arguments can be generalized,
but p uniform equivalence between exact and estimated error (as in Theorem 3) is not known to hold in higher space
dimensions. Theoretical and numerical studies of two- and three-dimensional problems are subject of forthcoming
research.

Notation. Let Pm for m ∈ N0 be the space of polynomials up to degree m. By L2(G), H 1
0 (G), and Hm(G) we

denote, for a domain G ⊂ Rd , the Lebesgue and Sobolev spaces. The corresponding norms are ‖v‖2
L2(G)

:= ∫
G

|v|2,

‖v‖2
H 1

0 (G)
:= ‖v′‖2

L2(G)
, and ‖v‖2

Hm(G) := ∑m
s=0 ‖v[s]‖2

L2(G)
, respectively.

1.1. The model problem

Let Ω ⊂ R be an open and bounded domain. Without loss of generality, we can assume that Ω := (0,1). For given
functions f :Ω → R and g :Ω → Rd seek u :Ω → R with

−u′′ = f + g′ in Ω,

u = 0 on ∂Ω. (1)

The weak formulation. Multiplying (1) with test functions v ∈ H 1
0 (Ω) and integrating by parts yields the problem:

find u ∈ H 1
0 (Ω) such that

1∫
0

u′v′ =
1∫

0

{f v − gv′} for all v ∈ H 1
0 (Ω). (2)

In this formulation, the assumption f ∈ L1(Ω) and g ∈ L2(Ω) leads to a well-posed problem. Note, that a disconti-
nuity of the function g will induce a Dirac measure on the right-hand side of (1).

The Galerkin method. The idea of the Galerkin method consists in the approximation of V := H 1
0 (Ω), ‖ · ‖V :=

‖ · ‖H 1
0 (Ω), by a finite dimensional space VN ⊂ V (with dim(VN) = N ∈ N). The discrete problem is then to find

u ∈ VN such that∫
Ω

u′
Nv′

N =
∫
Ω

{f vN − gv′
N } for all vN ∈ VN. (3)

Note, that we omit the influence of quadrature errors in the right-hand side. A unique solution to this problem exists
and the error estimate is obtained by Cea’s Theorem and interpolation estimates.

2. The finite element method

In the finite element method one constructs VN as piecewise polynomial functions with respect to a decomposition
of Ω .

2.1. Finite elements of varying polynomial order

We define the grid Gn ⊂ Ω for n ∈ N, to be a set of distinct grid points

Gn := {x0, . . . , xn+1: 0 = x0 < x1 < · · · < xn < xn+1 = 1}.
Especially, the set of interior grid points is

Gn := Gn ∩ Ω = {x1, . . . , xn}.
A decomposition of Ω is the set of intervals

Kn := {
K = [xk−1, xk]: k ∈ {1, . . . , n + 1}}.
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