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Abstract

In this paper, we propose a new filter line search SQP method in which the violations of equality and inequality constraints
are considered separately. Thus the filter in our algorithm is composed by three components: objective function value, equality
and inequality constraints violations. The filter with three components accepts reasonable steps flexibly, comparing that with two
components. The new filter shares some features with the Chin and Fletcher’s approach, namely the “slanting envelope” and the
“inclusion property”. Under mild conditions, the filter line search SQP method is proven to be globally convergent. Numerical
experiments also show the efficiency of our method.
© 2008 IMACS. Published by Elsevier B.V. All rights reserved.

MSC: 65K05; 90C30

Keywords: Line search method; Backtracking; Constrained optimization problem; SQP; Filter

1. Introduction

Fletcher and Leyffer [9] proposed the filter method to solve nonlinear programming (NLP) problems as an alter-
native to the traditional merit function approach. The underlying concept of filter is fairly simple, being based on the
multi-objective optimization, that is the trial point is accepted provided there is a sufficient decrease of the objective
function or the constraint violation function. In addition, the computational results presented in Fletcher and Leyffer
[9] are also very encouraging. This topic got high importance in recent years (see [5,11,14,21,22]). Trust region filter
sequential quadratic programming (SQP) methods have been studied by Fletcher, Leyffer and Toint in [10] and by
Fletcher, Gould, Leyffer, Toint and Wächter in [8]. In this latter paper, an approximate solution of the QP subproblem
is computed and the trial step is decomposed into normal and tangential components. Moreover, Gould and Toint
proposed in [18] a hybrid trust region filter SQP algorithm. In all these papers only the global convergence of the
proposed methods is analyzed. On the other hand, in [26], Ulbrich studied the local convergence of a trust region filter
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SQP method. Anyway, the components in the filter adopted in [26], differs from those in [9,10,8]. It should be under-
lined that the filters approach has been used also in conjunction with the line search strategy (see Wächter and Biegler
[29,30]); with interior point methods (see Benson, Shanno and Vanderbei [4]; Ulbrich, Ulbrich and Vicente [27]) and
with the pattern search method (see Audet and Dennis [1]). Finally, the filter’s idea has been employed to solve least
squares problems and nonlinear equations [15] and unconstrained optimization problems [16]. In these latter papers,
as well as in the code FILTRANE [17], multidimensional filters are employed.

The filter methods, compared to the traditional penalty function methods in which the adjustment of the penalty
parameter can be problematic, may make the trial steps accepted more easily. The numerical results [9,17] are more ef-
ficient. However, most of them use the bi-dimensional filter methods, and only a few of them use the multidimensional
filter [16,15,17] solving the unconstrained optimization problems.

In this paper, inspired by [15], we propose a tri-dimensional filter method based on the line search technique. The
underlying idea of filter is to interpret the NLP problem as a bi-objective optimization problem with two conflicting
purposes: minimizing the constraint violation and the objective function. The formal filter in [9] consists of two parts:
the objective function’s value and the constraint violation. It considers all the constraints together and defines only
one constraint violation. However, each constraint may have its own behavior. For example, some constraints may be
highly nonlinear, while some others are nearly linear. We split the constraints into equality and inequality constraints.
However, the partition used does not influence the global convergence analysis. We define the corresponding constraint
violations and drive the equality and inequality constraint violations to zero independently. Thus, the new filter consists
of three values: objective function value, equality and inequality constraint violations. This strategy admits more
flexibility in accepting steps as compared with the bi-dimensional filter methods.

Furthermore, the filter we proposed here contains a “slanting envelope” originally proposed in [5,9]. The new tri-
dimensional filter takes advantage of the “inclusion property” which will be described in Subsection 2.1 in detail. In
fact, if the filter is updated, then the space of unacceptable points for the new filter includes that for the old filter. We
remark that this is not guaranteed for the filters in [9,29].

This paper is organized as follows. In Section 2 the algorithm is developed and its key ingredients are described.
Namely, the decrease conditions for the objective function, the equality and inequality constraint violations. In Sec-
tion 3 we prove that under suitable conditions, the algorithm is well defined and globally convergent. In Section 4 we
illustrate the implementation issues and some of the obtained numerical results.

2. Algorithm

In this paper, we consider an NLP problem of the following form:

(P)

⎧⎪⎨
⎪⎩

min
x∈Rn

f (x)

s.t. cE (x) = 0,

cI (x) � 0,

(2.1)

where f : Rn → R, cE (x) = (c1(x), c2(x), . . . , cp(x))T , cI (x) = (cp+1(x), cp+2(x), . . . , cq(x))T are twice continu-
ously differentiable functions, E = {1, . . . , p}, I = {p + 1, . . . , q}.

The KKT conditions for problem (P) are⎧⎪⎪⎨
⎪⎪⎩

∇f (x) + ∇cE (x)λ + ∇cI (x)μ = 0,

cE (x) = 0, cI (x) � 0,

cI (x)T μ = 0,

μ � 0,

(2.2)

where λ ∈ Rp and μ ∈ Rq are the Lagrange multipliers corresponding to equality and inequality constraints, and ∇cE
and ∇cI are the Jacobian of cE and cI , respectively.

Let xk be the current solution at iteration k. The search direction dk is obtained by solving the following quadratic
programming (QP) problem:

QP(xk)

⎧⎪⎨
⎪⎩

min
d∈Rn

∇f (xk)
T d + 1

2dT Bkd

s.t. cE (xk) + ∇cE (xk)
T d = 0,

cI (xk) + ∇cI (xk)
T d � 0,
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