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Abstract

General elliptic interface problem with variable coefficients and curvilinear interface is transformed into analogous problem
with rectilinear interface. For the numerical solution of transformed problem a finite difference scheme with averaged right-hand
side is proposed. Convergence rate estimate in discrete W1

2 norm, compatible with the smoothness of data, is obtained. Analogous
parabolic problem with the singularity of “concentrated capacity” type is considered. Two finite difference schemes for its solution
are proposed and investigated.
© 2008 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Interface problems arise in different situations, for example, in heat conduction in composite materials or in prob-
lems with transmission conditions at the interfaces and singular sources. A survey of analytical results and models in
physics and chemistry concerning the equations considered in this paper is given in [3,20,24,30,32]. Various forms of
conjugation conditions satisfied by the solution and its derivatives on the interface are known [3,4,7,10,12,16,20,24].
In [16–20] convergence of finite difference method for different elliptic, parabolic and hyperbolic interface problems
is studied. Elliptic and parabolic interface problems with non-zero jump in the flux across the smooth interface are
considered in [4,10,28,29]. In the immersed interface method the jumps of the solution and its derivatives are utilized
to modify the standard finite difference schemes in the neighborhood of the interface (see [23]). Curved interface
problems within the framework of mortar finite element methods are analyzed in [8].

In the first part of the present work (Section 2) we investigate a general elliptic interface problem in rectangular
domain, crossed by curvilinear interface. By suitable variable change the problem is transformed into analogous one
with rectilinear interface. For the numerical solution of transformed problem a finite difference scheme with averaged
right-hand side is proposed. Convergence rate estimate in discrete W 1

2 norm, compatible with the smoothness of
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Fig. 1.

the data, is obtained. A part of these results was reported on the conference NAA’04-Rousse, Bulgaria, see [19].
Analogous problem for Laplace operator is considered in [12].

In the second part of the paper (Section 3) an analogous parabolic problem with line interface is considered. Two
finite difference schemes for its numerical solution are proposed and investigated. For both schemes the convergence
rate estimates in discrete Sobolev like norm W̃

1,1/2
2 are obtained. The obtained convergence rates are compatible with

the smoothness of the input data (up to a logarithmic factor of the mesh-size).

2. Elliptic problem

2.1. Problem with curvilinear interface

Let Ω = (0,1)2, Γ = ∂Ω , and let S be a smooth curve intersecting Ω . For clarity, let S be defined by equation
ξ2 = g(ξ1), where g ∈ C1[0,1] and 0 < g0 � g(ξ1) � g1 < 1, g0, g1 = const. In domain Ω we consider Dirichlet
boundary value problem [19]

MU + K(ξ)δS(ξ)U = F(ξ) in Ω, U = 0 on Γ, (1)

where ξ = (ξ1, ξ2),

MU = −
2∑

i,j=1

Aij (ξ)
∂2U

∂ξi∂ξj

+ 2
2∑

i=1

Bi(ξ)
∂U

∂ξi

+ C(ξ)U, Aij (ξ) = Aji(ξ)

is elliptic operator and δS(ξ) is Dirac distribution concentrated on S. The equality in (1) is treated in the sense of
distributions.

The BVP (1) can be transformed into analogous one with the rectilinear interface. It can be easily verified that the
change of variables x = x(ξ), where

x1 = ξ1, x2 = [1 − g(ξ1)]ξ2

ξ2 − 2ξ2g(ξ1) + g(ξ1)
(2)

maps Ω onto Ω . The curve S is mapped onto straight line Σ : x2 = 1/2 (see Fig. 1).
By change of variables (2) BVP (1) transforms to following one

Lu + k(x)δΣ(x)u = f (x) in Ω, u = 0 on Γ, (3)

where u(x) = U(ξ), f (x) = F(ξ), δΣ(x) = δ(x2 − 1/2) is Dirac distribution concentrated on Σ , k(x) = k(x1) =
K(x1, g(x1))

√
1 + [g′(x1)]2, while coefficients of differential operator

Lu = −
2∑

i,j=1

aij (x)
∂2u

∂xi∂xj

+ 2
2∑

i=1

b̂i (x)
∂u

∂xi

+ ĉ(x)u, aij (x) = aji(x)

can be expressed by coefficients of M and derivatives ∂xi

∂ξj
, for example
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