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Abstract

This article introduces a new fourth-order implicit time-stepping scheme for the numerical solution of the acoustic wave equation,
as a variant of the conventional modified equation method. For an efficient simulation, the scheme incorporates a locally one-
dimensional (LOD) procedure having the splitting error of O(�t4). Its stability and accuracy are compared with those of the
standard explicit fourth-order scheme. It has been observed from various experiments for 2D problems that (a) the computational
cost of the implicit LOD algorithm is only about 40% higher than that of the explicit method, for the problems of the same size,
(b) the implicit LOD method produces less dispersive solutions in heterogeneous media, and (c) its numerical stability and accuracy
match well those of the explicit method.
© 2006 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Let Ω ⊂ R
m, 1 � m � 3, be a bounded domain with its boundary Γ = ∂Ω and J = (0, T ] the time interval, T > 0.

Consider the following acoustic wave equation:

(a)
1

c2
utt − �u = S(x, t), (x, t) ∈ Ω × J,

(b)
1

c
ut + uν = 0, (x, t) ∈ Γ × J,

(c) u(x,0) = g0(x), ut (x,0) = g1(x), x ∈ Ω, t = 0, (1)

where c = c(x) > 0 denotes the normal velocity of the wavefront, S is the wave source/sink, ν denote the unit outer
normal from Γ , and g0 and g1 are initial data.

Wave problems are often formulated in an unbounded domain. These problems can be solved numerically by first
truncating the given unbounded domain, imposing a suitable absorbing boundary condition (ABC) on the (artificial)
boundary of the truncated bounded domain, and then solving the resulting problem using discretization methods (e.g.,
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finite differences, finite elements, and spectral methods). Eq. (1.b) has been popular as a simple-but-effective ABC,
since introduced by Clayton and Engquist [3]. Eq. (1) has been extensively studied as a model problem for second-
order hyperbolic problems by many authors; see, e.g. [1,2,5,10,11,13]. It is often the case that the source is given in
the following form

S(x, t) = δ(x − xs)f (t),

where xs ∈ Ω is the source point. For the function f , the Ricker wavelet of frequency ν can be chosen, i.e.,

f (t) = π2ν2(1 − 2π2ν2t2)e−π2ν2t2
.

In Geophysical applications, the wave equation (1) is often solved by explicit time-stepping schemes, which require
to choose the time step size sufficiently small to satisfy the stability condition and to reduce numerical dispersion as
well. Alternative conventional approaches for solving wave equations introduce an auxiliary variable to rewrite the
equation as a first-order hyperbolic system. With these approaches one introduces new unknowns, which result in an
increase in the number of variables in the discrete problems. Thus, there are good reasons to try to keep the formulation
involving the second time-derivative and a scalar unknown. However, it has been known that with this formulation it is
hard to construct methods combining good stability with high accuracy. In particular, it is hard to incorporate a high-
order approximation of the ABC. In this paper we shall introduce a one-parameter family of three-level methods
incorporating the locally one-dimensional (LOD) time-stepping procedure for an efficient simulation. It is analyzed
to be unconditionally stable for the parameter in a certain range.

An outline of the article is as follows. In the next section, we first review the conventional methods: explicit (three-
level) schemes and the two-level implicit scheme. Section 3 introduces a new three-level implicit scheme. A locally
one-dimensional (LOD) perturbation having the splitting error in O(�t4) is considered for an efficient simulation. Its
stability and computational complexity are compared with those of the standard explicit fourth-order scheme in the
same section. In Section 4, we present some numerical results showing numerical stability, efficiency, and accuracy
of the new scheme. In Section 5, we discuss strategies of incorporating high-order approximations of the ABC. The
last section includes conclusions.

2. Preliminaries

In this section, we review conventional methods for the numerical solution of the wave equation (1). Let A denote
an approximation of −� of order p, i.e.,

Au ≈ −�u +O
(
hp

)
,

where h is the grid size; in most cases, p is 2 or 4. Then, the semi-discrete equation for the acoustic wave equation
reads

1

c2
vtt +Av = S. (2)

(Here we have omitted the equations for the boundary and initial conditions, for a simpler presentation.)
It now remains to discretize the second-order system of ODEs (2) with respect to the time variable. Let �t be the

time step size and tn = n�t . Define vn(x) = v(x, tn). For a simpler presentation, we define the following difference
operator

∂tt v
n := vn+1 − 2vn + vn−1

�t2
.

2.1. Explicit schemes

Explicit methods are still popular in the simulation of waveforms. We begin with the second-order scheme (in time)
formulated as

1

c2
∂tt v

n +Avn = Sn. (3)
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