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Abstract

We prove the convergence of a first order finite difference scheme approximating a non-local eikonal Hamilton–Jacobi equation.
The non-local character of the problem makes the scheme not monotone in general. However, by using in a convenient manner the
convergence result for monotone scheme of Crandall–Lions, we obtain the same bound

√|�X| + �t for the rate of convergence.
© 2006 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The paper is concerned with the convergence of a first order finite difference scheme that approximates the solution
of a non-local Hamilton–Jacobi equation of the form

ut = c[u]|∇u| in R
2 × (0, �T ), u(·,0) = u0 in R

2. (1)

The non-local mapping c enjoys suitable regularity assumptions and the initial condition u0 is globally Lipschitz
continuous, possibly unbounded.

A typical example of mapping c[u] we have in mind is

c[u] = c0 � [u],
where [u] is the characteristic function of the set {u � 0}, defined by

[u] =
{

1 if u � 0,

0 if u < 0.
(2)
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Here the kernel c0, which depends only on the space variables, is integrable and has bounded variation and � denotes
the convolution in space. The zero level set of the solution of the resulting equation{

ut (x, y, t) = (c0 � [u](x, y, t))|∇u(x, y, t)| R
2 × (0, �T ),

u(x, y,0) = u0(x, y) R
2,

(3)

models the evolution of a dislocation line in a 2D plane (see [2,3] for a physical presentation of the model for dislo-
cation dynamics). Solutions for Eq. (1) should be understood in the framework of the theory of continuous viscosity
solutions, see [4,6,7]. Convergence results in the approximation theory of the local version of (1) have been given by
Crandall and Lions in [5] for monotone finite difference schemes and by Falcone and Giorgi in [8] and by Falcone
and Ferretti in [9] for semi-Lagrangian schemes.

We approximate the non-local equation (1) by a first order finite difference scheme that uses a monotone numerical
Hamiltonian for the norm of the spatial gradient, the forward Euler scheme for the time derivative and a proper
abstract discrete approximation of the non-local operator c. The non local character of the problem makes the scheme
not monotone in general. However, by using in a convenient manner the convergence result for monotone scheme of
Crandall Lions, we are able to obtain the same bound

√|�X| + �t for the rate of convergence provided the terminal
horizon �T > 0 is small enough. The results can be extended to R

n; however, to keep the notation simple and since we
have in mind a problem in a plane, we present the problem in R

2.
The present paper is fairly abstract. Its main objective is to find out general assumptions on the discrete approxi-

mation of the non-local operator c[u] that guarantee the convergence of the scheme. A companion paper to this article
is [1] where we apply this convergence result to the study of the dislocation dynamics equation (3).

The paper is organized as follows. The precise assumptions on the non-local velocity that guarantee the solv-
ability of the non-local Hamilton–Jacobi equation (1) are given in Section 2. In Section 3, we recall the classical
finite-difference scheme for the approximation of local eikonal equations. The extension of the scheme to non-local
equations is given in Section 5. Section 4 recalls the Crandall–Lions [5] estimate of the rate of convergence for lo-
cal Hamilton–Jacobi equations. We give an updated proof of the result that tackles the non-classical assumptions we
make (in particular, the non-boundedness of the initial condition). Finally, we state and prove in Section 6 our main
convergence result.

2. The continuous problem

We are interested in the non-local Hamilton–Jacobi equation

ut = c[u]|∇u| in R
2 × (0, �T ), u(·,0) = u0 in R

2,

where the mapping c enjoys suitable regularity assumptions to be specified in a moment and where the initial condition
u0 is (globally) Lipschitz continuous, possibly unbounded.

First, we consider the eikonal equation

ut = c(x, y, t)|∇u| in R
2 × (0, �T ), u(·,0) = u0 in R

2 (4)

to set a few notations. We assume that the velocity c is bounded and Lipschitz continuous with respect to all the
variables.

The classical theory of viscosity solutions ensures that (4) as a unique continuous viscosity solution with at most
linear growth in space. Moreover, the solution u is Lipschitz continuous in space and time, with a Lipschitz constant
that depends only on the velocity c and on u0. We denote by G :W 1,∞(R2 × [0, �T )) → Lip(R2 × [0, �T )) the solution
operator that associates to c the solution u of (4), i.e.

G(c) = u. (5)

Here, Lip(R2 × [0, �T )) denotes the set of the globally Lipschitz functions in space and time, possibly unbounded.
Next, we consider two sets U ⊂ Lip(R2 × [0, �T )) and V ⊂ W 1,∞(R2 × [0, �T )). We assume that V is bounded in

W 1,∞(R2 × [0, �T )), i.e. that there is a constant K0 such that

|w|W 1,∞(R2×(0,�T )) � K0, for all w ∈ V. (6)

For any 0 � T � �T , we set UT = U ∩ Lip(R2 × [0, T )) and VT = V ∩ W 1,∞(R2 × [0, T )), i.e. UT and VT are the
restrictions to [0, T ) of the functions in U and V respectively. We suppose that, for all T , UT and VT are closed for
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