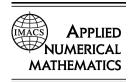


Available online at www.sciencedirect.com

Applied Numerical Mathematics 56 (2006) 1136-1146



www.elsevier.com/locate/apnum

Convergence of a first order scheme for a non-local eikonal equation [☆]

O. Alvarez^{a,*}, E. Carlini^b, R. Monneau^c, E. Rouy^d

^a UMR 60-85, Université de Rouen, 76821 Mont-Saint Aignan cedex, France

^b Dipartimento di Matematica, Università di Roma "La Sapienza", P. Aldo Moro 2, 00185 Rome, Italy ^c CERMICS – ENPC 6 et 8 avenue Blaise Pascal, Citè Descartes – Champs sur Marne, 77455 Marne la Vallèe cedex 2, France

^d Departement de Mathematiques, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully cedex, France

Available online 3 May 2006

Abstract

We prove the convergence of a first order finite difference scheme approximating a non-local eikonal Hamilton–Jacobi equation. The non-local character of the problem makes the scheme not monotone in general. However, by using in a convenient manner the convergence result for monotone scheme of Crandall–Lions, we obtain the same bound $\sqrt{|\Delta X| + \Delta t}$ for the rate of convergence. © 2006 IMACS. Published by Elsevier B.V. All rights reserved.

Keywords: Non-local equation; Crandall-Lions error estimate; Eikonal equation; Hamilton-Jacobi equations; Finite difference scheme

1. Introduction

The paper is concerned with the convergence of a first order finite difference scheme that approximates the solution of a non-local Hamilton–Jacobi equation of the form

$$u_t = c[u] |\nabla u| \quad \text{in } \mathbb{R}^2 \times (0, \overline{T}), \qquad u(\cdot, 0) = u^0 \quad \text{in } \mathbb{R}^2.$$
(1)

The non-local mapping c enjoys suitable regularity assumptions and the initial condition u^0 is globally Lipschitz continuous, possibly unbounded.

A typical example of mapping c[u] we have in mind is

$$c[u] = c^0 \star [u],$$

where [*u*] is the characteristic function of the set $\{u \ge 0\}$, defined by

$$[u] = \begin{cases} 1 & \text{if } u \ge 0, \\ 0 & \text{if } u < 0. \end{cases}$$
(2)

* Corresponding author.

0168-9274/\$30.00 © 2006 IMACS. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.apnum.2006.03.002

^{*} This work has been supported by funds from ACI JC 1041 "Mouvements d'interfaces avec termes non-locaux", from ACI-JC 1025 "Dynamique des dislocations" and from ONERA, Office National d'Etudes et de Recherches. The second author was also supported by the ENPC-Région IIe de France.

Here the kernel c^0 , which depends only on the space variables, is integrable and has bounded variation and \star denotes the convolution in space. The zero level set of the solution of the resulting equation

$$\begin{cases} u_t(x, y, t) = (c^0 \star [u](x, y, t)) |\nabla u(x, y, t)| & \mathbb{R}^2 \times (0, \overline{T}), \\ u(x, y, 0) = u^0(x, y) & \mathbb{R}^2, \end{cases}$$
(3)

models the evolution of a dislocation line in a 2D plane (see [2,3] for a physical presentation of the model for dislocation dynamics). Solutions for Eq. (1) should be understood in the framework of the theory of continuous viscosity solutions, see [4,6,7]. Convergence results in the approximation theory of the local version of (1) have been given by Crandall and Lions in [5] for monotone finite difference schemes and by Falcone and Giorgi in [8] and by Falcone and Ferretti in [9] for semi-Lagrangian schemes.

We approximate the non-local equation (1) by a first order finite difference scheme that uses a monotone numerical Hamiltonian for the norm of the spatial gradient, the forward Euler scheme for the time derivative and a proper abstract discrete approximation of the non-local operator c. The non local character of the problem makes the scheme not monotone in general. However, by using in a convenient manner the convergence result for monotone scheme of Crandall Lions, we are able to obtain the same bound $\sqrt{|\Delta X| + \Delta t}$ for the rate of convergence provided the terminal horizon $\overline{T} > 0$ is small enough. The results can be extended to \mathbb{R}^n ; however, to keep the notation simple and since we have in mind a problem in a plane, we present the problem in \mathbb{R}^2 .

The present paper is fairly abstract. Its main objective is to find out general assumptions on the discrete approximation of the non-local operator c[u] that guarantee the convergence of the scheme. A companion paper to this article is [1] where we apply this convergence result to the study of the dislocation dynamics equation (3).

The paper is organized as follows. The precise assumptions on the non-local velocity that guarantee the solvability of the non-local Hamilton–Jacobi equation (1) are given in Section 2. In Section 3, we recall the classical finite-difference scheme for the approximation of local eikonal equations. The extension of the scheme to non-local equations is given in Section 5. Section 4 recalls the Crandall–Lions [5] estimate of the rate of convergence for local Hamilton–Jacobi equations. We give an updated proof of the result that tackles the non-classical assumptions we make (in particular, the non-boundedness of the initial condition). Finally, we state and prove in Section 6 our main convergence result.

2. The continuous problem

We are interested in the non-local Hamilton-Jacobi equation

$$u_t = c[u] |\nabla u|$$
 in $\mathbb{R}^2 \times (0, \overline{T})$, $u(\cdot, 0) = u^0$ in \mathbb{R}^2 .

where the mapping c enjoys suitable regularity assumptions to be specified in a moment and where the initial condition u^0 is (globally) Lipschitz continuous, possibly unbounded.

First, we consider the eikonal equation

$$u_t = c(x, y, t) |\nabla u| \quad \text{in } \mathbb{R}^2 \times (0, \overline{T}), \qquad u(\cdot, 0) = u^0 \quad \text{in } \mathbb{R}^2$$
(4)

to set a few notations. We assume that the velocity c is bounded and Lipschitz continuous with respect to all the variables.

The classical theory of viscosity solutions ensures that (4) as a unique continuous viscosity solution with at most linear growth in space. Moreover, the solution u is Lipschitz continuous in space and time, with a Lipschitz constant that depends only on the velocity c and on u^0 . We denote by $G: W^{1,\infty}(\mathbb{R}^2 \times [0, \overline{T})) \to \text{Lip}(\mathbb{R}^2 \times [0, \overline{T}))$ the solution operator that associates to c the solution u of (4), i.e.

$$G(c) = u. (5)$$

Here, $\operatorname{Lip}(\mathbb{R}^2 \times [0, \overline{T}))$ denotes the set of the globally Lipschitz functions in space and time, possibly unbounded.

Next, we consider two sets $U \subset \text{Lip}(\mathbb{R}^2 \times [0, \overline{T}))$ and $V \subset W^{1,\infty}(\mathbb{R}^2 \times [0, \overline{T}))$. We assume that V is bounded in $W^{1,\infty}(\mathbb{R}^2 \times [0, \overline{T}))$, i.e. that there is a constant K_0 such that

$$|w|_{W^{1,\infty}(\mathbb{R}^2 \times (0,\overline{T}))} \leqslant K_0, \quad \text{for all } w \in V.$$
(6)

For any $0 \leq T \leq \overline{T}$, we set $U_T = U \cap \text{Lip}(\mathbb{R}^2 \times [0, T))$ and $V_T = V \cap W^{1,\infty}(\mathbb{R}^2 \times [0, T))$, i.e. U_T and V_T are the restrictions to [0, T) of the functions in U and V respectively. We suppose that, for all T, U_T and V_T are closed for

Download English Version:

https://daneshyari.com/en/article/4646369

Download Persian Version:

https://daneshyari.com/article/4646369

Daneshyari.com