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Abstract

In a recent paper, we reported a generalized approximation technique for the recursive formulation of the Tau method. This
paper is concerned with an extension of that discourse to non-linear ordinary differential equations. The numerical results show
that the method is effective and accurate.
c⃝ 2015 The Authors. Production and Hosting by Elsevier B.V. on behalf of Nigerian Mathematical Society. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In 1981, Ortiz and Samara [1] proposed an operational technique for the numerical solution of non-linear ordinary
differential equations with some supplementary conditions based on the Tau method [2]. Recently, considerable
work has been done both in the development of the technique, its theoretical analysis and numerical applications.
The technique has been described in a series of papers [3–6,1,12–15], for the case of linear ordinary differential
eigenvalue problems. Yisa and Adeniyi [7] reported the construction of generalized canonical polynomials while
Issa and Adeniyi [8,16] reported generalized approximation for the recursive formulation of the Tau method for the
solution of ordinary differential equations, their earlier works are further extended to non-linear ordinary differential
equations.

2. Recursive formulation of Tau approximant

In this section, we review the Tau approximant for the recursive form (see [8]) using the generalized Canonical
polynomials Qn(x) (see [7]) to solve the mth order ordinary differential equation of the form:
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by seeking an approximant
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of y(x) which is the exact solution of the corresponding perturbed system

Lyn(x) =
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+ Hn(x) (2.2a)

L∗yn(xrk) = αk, k = 1(1)m (2.2b)

where αk , fk , Pr,k , Nr ; r = 0(1)m, k = 0(1)Nr are real integers, y(r) denote the derivatives of order r of y(x), the
perturbation term Hn(x) in (2.2a) is defined by:
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and C (n)
r is the coefficient of xr in the nth degree Chebyshev polynomial Tn(x); that is,
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The τ ’s are fixed parameters to be determined and s, the number of overdetermination of (2.1a), is defined by:

s = max {Nr − r > 0 | 0 ≤ r ≤ m} .

For different orders m and s (that is m = 1, 2, . . . and s = 1, 2, . . .) we have
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Assume Qr (x) = Pr = 1, r = 0(1)(s − 1) and
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where Eq. (2.3b) is the coefficient of undetermined Canonical polynomials, qn(x) = Qn(x) − Pn ,
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