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Abstract

In a recent paper, we reported a generalized approximation technique for the recursive formulation of the Tau method. This
paper is concerned with an extension of that discourse to non-linear ordinary differential equations. The numerical results show
that the method is effective and accurate.
© 2015 The Authors. Production and Hosting by Elsevier B.V. on behalf of Nigerian Mathematical Society. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In 1981, Ortiz and Samara [1] proposed an operational technique for the numerical solution of non-linear ordinary
differential equations with some supplementary conditions based on the Tau method [2]. Recently, considerable
work has been done both in the development of the technique, its theoretical analysis and numerical applications.
The technique has been described in a series of papers [3-6,1,12—15], for the case of linear ordinary differential
eigenvalue problems. Yisa and Adeniyi [7] reported the construction of generalized canonical polynomials while
Issa and Adeniyi [8,16] reported generalized approximation for the recursive formulation of the Tau method for the
solution of ordinary differential equations, their earlier works are further extended to non-linear ordinary differential
equations.

2. Recursive formulation of Tau approximant

In this section, we review the Tau approximant for the recursive form (see [8]) using the generalized Canonical
polynomials Q, (x) (see [7]) to solve the mth order ordinary differential equation of the form:
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by seeking an approximant
n
() =Y ax", r<+o0
r=0

of y(x) which is the exact solution of the corresponding perturbed system

Ly,(x) = ) frx" + Hy(x) (2.2a)
r=0
L*yn (k) = ok,  k=1(1m (2.2b)

where oy, fk, Prk, Nrs v = 0(1)m, k = O(1)N, are real integers, y(’) denote the derivatives of order r of y(x), the
perturbation term H, (x) in (2.2a) is defined by:

m+s—1 m+s—1 n—m+i+l1
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and Cr(") is the coefficient of x” in the nth degree Chebyshev polynomial 7;,(x); that is,

2x—a—>b 1
-1 _
T,(x) = cos (n cos {ﬁ }) = Z Cr(”)x’.
r=0
The t’s are fixed parameters to be determined and s, the number of overdetermination of (2.1a), is defined by:
s=max{N, —r >0|0<r <m}.

For different orders m and s (thatism = 1,2,...ands = 1,2, ...) we have

o m+s—1 n—m+i—+1 )
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Assume Q,(x) = P, =1,r =0(1)(s — 1) and
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where Eq. (2.3b) is the coefficient of undetermined Canonical polynomials, g, (x) = Q,(x) — Py,
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