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Abstract

In this paper, we put restrictions on the coefficients of a polynomial in order to improve the bounds for their zeros in a specific
region. Our results extend and generalise a number of previously well known theorems including Enestrom—Kakeya theorem.
© 2015 The Authors. Production and Hosting by Elsevier B.V. on behalf of Nigerian Mathematical Society. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Let P(z) = Z?:o a ij be a polynomial of degree n. One of the fundamental problem of finding out the region
which contains all or a prescribed number of zeros of a polynomial was first studied by Gauss [1]. He proved:

Theorem 1.1. If P(z) = 7" + Z;l;{ ajzj, where a;j are all real, then P(z) has all its zeros in |z| < R, where (i)
R =max(1, Z%S), s being the sum of positive aj (ii) R = max(n2% |aj|)j.
In 1829, Cauchy [2] gave more exact bounds for the moduli of zeros of a polynomial than those given by Gauss [1].

He proved the following result.

Theorem 1.2. All the zeros of the polynomial P(z) = Z?:o ajzj of degree n lie in the circle |z| < R, where R is the
root of the equation

laol + la1]z + laalz® + - + lan_112" " + +lan|2" = 0.
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Several generalisations and improvements of this result are available in the literature (see [3,4]). The following
elegant results on the location of zeros of a polynomial with restricted coefficients is known as the Enestrom—Kakeya
theorem [5,6].

Theorem 1.3 (Enestrom—Kakeya). Let P(z) = Z?‘:O a jzj be a polynomial of degree n whose coefficients aj satisfy
ap = ap—1 -+ = ap = ap > 0,
then all the zeros of P(2) lie in the closed unit disk |z| < 1.

Joyal, Labella and Rahman [4] extended Theorem 1.3 to polynomials whose coefficients are monotonic but need not
be non-negative as follows:

Theorem 1.4. Let P(z) = Z?:o ajzj be a polynomial of degree n such that
ap Z Ap—1 -++ = 4y = Ao,
then all the zeros of P(2) lie in

an + laol — ao
|Z|§"—

|an
Aziz and Zargar [7] relaxed the conditions of Theorem 1.3 and proved the following generalisation of Theorem 1.4.

Theorem 1.5. Let P(z) = Z?:o ajzj be a polynomial of degree n such that for some k > 1,
ka, > ap—1--- > a1 = ao,

then all the zeros of P(2) lie in

kan + lag| — ao

|ty

lz4+k—1] <

Govil and Rahman [3] considered polynomials whose coefficients are not necessarily real. Infact, they proved the
following generalisation of Theorem 1.3.

Theorem 1.6. Let P(z) = Z,;':O ajzj be a polynomial of degree n with Re(a;) = aj and Im(aj) = Bj, j =
0,1,2,...,n such that

p > 0p_1-->0ap >ag >0,

where o, > 0, then P(z) has all its zeros in
2 n
<14 - il
2l =1+ ;0 18;1

The following generalizations of Theorems 1.4, 1.5 and 1.6 was proved by Govil and Mc-tume [8].
Theorem 1.7. Let P(z) = Z?’:O ajzj be a polynomial of degree n with Re(aj) = aj and Im(aj) = Bj, j =
0,1,2,...,n such that for some k > 1,

kay > ay—1--- > a1 > ag,

where a, > 0, then P (z) has all its zeros in

n
ko, —ag + lagl +2 Y 18]
i=0

lz4+k—-1] <

|t |

Aziz and Zargar [9] obtained some extensions of Theorem 1.3 by relaxing the hypothesis as follows:
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