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Abstract

This note introduces the vertex proper connection number of a graph and provides a relationship to the chromatic number of
minimally connected subgraphs. Also a notion of total proper connection is introduced and a question is asked about a possible
relationship between the total proper connection number and the vertex and edge proper connection numbers.
c⃝ 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

All graphs considered in this work are simple, finite and undirected. Unless otherwise noted, by a coloring of a
graph, we mean a vertex-coloring, not necessarily proper.

Now well studied, the (edge) rainbow k-connection number of a graph is the minimum number of colors c such that
the edges of the graph can be colored so that between every pair of vertices, there exist k internally disjoint rainbow
edge-colored paths. See [1,2] for surveys of results about the rainbow connection number. Note that the rainbow
1-connection number is related, at least conceptually, to the diameter of the graph.

The total rainbow k-connection number, defined in [3], is defined to be the minimum number of colors c such that
the edges and vertices of the graph can be colored with c colors so that between every pair of vertices, there exist k
internally disjoint rainbow paths where here rainbow means all interior vertices and edges have distinct colors. Note
that we cannot require the end-vertices of the paths to also have distinct colors as that would reduce the problem to
edge rainbow k-connectivity since every vertex would then be required to have a distinct color.

The edge proper connection number pck(G), defined in [4] and further studied in [5], is defined to be the minimum
number of colors c such that the edges of the graph G can be colored with c colors such that between each pair of
vertices, there exist k internally disjoint, properly edge-colored paths. One feature of edge-proper connection that
makes the results extremely complicated is that proper edge-colored paths are not transitive in the sense that if there
is a proper path from u to v and a proper path from v to w, there may not be a proper path from u to w. For example,
let G be a path on three vertices, uvw and color both edges red.
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In this work, we consider a vertex version of the edge proper connection number. For a positive integer k, a colored
graph G is called (vertex) properly k-connected if, between every pair of vertices, there exist at least k internally
disjoint properly colored paths. Note that each path, including end-vertices, must be properly colored. Given a graph
G, the vertex proper k-connection number of the graph G, denoted vpck(G), is the minimum number of colors needed
to produce a properly k-connected coloring of G. For ease of notation, let vpc(G) = vpc1(G).

The function vpck(G) is clearly well defined if and only if κ(G) ≥ k. Also note that vpck(G) ≤ χ(G) for every
k-connected graph G. Furthermore, the following fact is immediate.

Fact 1. For all k ≥ 2 and every k-connected graph G, vpck(G) ≥ vpck−1(G).

A graph G is called minimally k-connected if G is k-connected but the removal of any edge from G leaves a graph
that is not k-connected. A classical result of Mader [6] (also found in [7]) will immediately give us one of our upper
bounds.

Theorem 1 ([6,7]). A minimally k-connected graph is k + 1 colorable and this bound is sharp.

2. General classification

Our first observation demonstrates the transitivity of the vertex proper connection, a fact that is not true in the case
of edge proper connection.

Fact 2. In a colored graph G, if there is a proper path from u to v and a proper path from v to w, then there is a
proper path from u to w.

Proof. The proof is trivial if the u–v path and the v–w path intersect only at v so suppose the paths intersect elsewhere
and let x be the first vertex on the path from u to v that is also on the v–w path. Note that we may have x = u. Then
the subpath of the u–v path that goes from u to x and the subpath of the v–w path that goes from x to w is a properly
colored path and completes the proof. �

Clearly the addition of edges cannot increase the vertex proper connection number of a graph so the following fact
is trivial.

Fact 3. Given a positive integer k and a k-connected graph G, if H is a spanning k-connected subgraph of G, then
vpck(G) ≤ vpck(H).

Our main result solidifies the link between the vpck function and the chromatic number of the graph. It turns out
that vpck(G) always equals the chromatic number of a particular subgraph of G. Let

sχk(G) = min{χ(H) : H is a k-connected spanning subgraph of G}.

Theorem 2 (Classification). Given a k-connected graph G, vpck(G) = sχk(G).

Proof. Given a k-connected spanning subgraph H of G with chromatic number ℓ, color this subgraph properly with ℓ

colors. Then between every pair of vertices in H , there are at least k internally disjoint properly colored paths. Thus,
using Fact 3, vpck(G) ≤ vpck(H) = ℓ so vpck(G) ≤ sχk(G).

Now let ℓ = vpck(G) and consider an ℓ-coloring of G which is properly k-connected. Let P be the set of all
proper paths between pairs of vertices (k paths for each pair of vertices). Then the subgraph H of G induced on all the
edges of P spans G, is k-connected and has chromatic number at most ℓ. This means vpck(G) ≥ sχk(G), completing
the proof. �

3. Consequences of Theorem 2

Theorem 2 shows that every statement about vpck is a statement about the chromatic number of a minimally k-
connected subgraph. Particularly, if G is minimally k-connected, then vpck(G) = χ(G). When the graph is bipartite,
we get the following easy observation.
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