

Available online at www.sciencedirect.com

AKCE International Journal of Graphs and Combinatorics

AKCE International Journal of Graphs and Combinatorics 13 (2016) 107-111

www.elsevier.com/locate/akcej

On friendly index sets of the edge-gluing of complete graph and cycles

Gee-Choon Lau^a, Zhen-Bin Gao^b, Sin-Min Lee^c, Guang-Yi Sun^{b,*}

^a Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (Segamat Campus), 85000 Johor, Malaysia
^b College of Science, Harbin Engineering University, Harbin, 150001, People's Republic of China
^c 34803, Hollyhock Street, Union City, CA94587, USA

Received 27 January 2015; accepted 11 March 2016 Available online 15 July 2016

Abstract

Let *G* be a graph with vertex set V(G) and edge set E(G). A vertex labeling $f: V(G) \to Z_2$ induces an edge labeling $f^+: E(G) \to Z_2$ defined by $f^+(xy) = f(x) + f(y)$, for each edge $xy \in E(G)$. For $i \in Z_2$, let $v_f(i) = |\{v \in V(G) : f(v) = i\}|$ and $e_f(i) = |\{e \in E(G) : f^+(e) = i\}|$. We say *f* is friendly if $|v_f(0) - v_f(1)| \le 1$. We say *G* is cordial if $|e_f(1) - e_f(0)| \le 1$ for a friendly labeling *f*. The set $FI(G) = \{|e_f(1) - e_f(0)| : f$ is friendly} is called the friendly index set of *G*. In this paper, we investigate the friendly index sets of the edge-gluing of a complete graph K_n and *n* copies of cycles C_3 . The cordiality of the graphs is also determined.

© 2016 Publishing Services by Elsevier B.V. on behalf of Kalasalingam University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Vertex labeling; Friendly labeling; Cordiality

1. Introduction

Let G be a connected graph with vertex set V(G) and edge set E(G). A vertex labeling $f : V(G) \to Z_2$ induces an edge labeling $f^+ : E(G) \to A$ defined by $f^+(xy) = f(x) + f(y)$, for each edge $xy \in E(G)$. For $i \in Z_2$, let $v_f(i) = |\{v \in V(G) : f(v) = i\}|$ and $e_f(i) = |\{e \in E(G) : f^+(e) = i\}|$. A labeling f of a graph G is said to be friendly if $|v_f(1) - v_f(0)| \le 1$. For a friendly labeling f of a graph G, we define the friendly index of G under f as $|e_f(1) - e_f(0)|$. If $|e_f(1) - e_f(0)| \le 1$, we say G is cordial [1]. The set $FI(G) = \{|e_f(1) - e_f(0)| : f \text{ is friendly}\}$ is called the friendly index set of G [2]. For more related results and open problems, see [3–11]. When the context is clear, we will also drop the subscript f.

Note that if 0 or 1 is in FI(G), then G is cordial. Thus, the concept of friendly index sets is a generalization of cordiality. Cairnie and Edwards [12] have determined the computational complexity of cordial labeling and Z_k -cordial labeling to be NP-complete. Thus, in general, it is difficult to determine the friendly index sets of graphs.

http://dx.doi.org/10.1016/j.akcej.2016.06.004

Peer review under responsibility of Kalasalingam University.

^{*} Corresponding author.

E-mail address: sunguangyi@hrbeu.edu.cn (G.-Y. Sun).

^{0972-8600/© 2016} Publishing Services by Elsevier B.V. on behalf of Kalasalingam University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keeping the above in view, in this paper, we investigate the full friendly index sets of the edge-gluing of a complete graph K_n and n copies of cycle C_3 , denoted $G(n, 3)(n \ge 3)$. We let the vertices of K_n be v_j (j = 1, 2, ..., n) and the 3-cycles are given by $v_i v_{i+1} u_i (1 \le i \le n-1)$ and $v_n v_1 u_n$. Consequently, the cordiality of G(n, 3) is also determined.

The following results were obtained in [7].

Lemma 1.1. If G is any graph of q edges, then $FI(G) \subseteq \{0, 2, 4, \dots, q\}$ if q is even, and $FI(G) \subseteq \{1, 3, 5, \dots, q\}$ if q is odd.

Lemma 1.2. Any vertex labeling (not necessarily friendly) of a cycle must have e(1) equal to an even number.

2. Main results

Lemma 2.1. For $n \ge 3$, we have

$$\max\{FI(G(n,3))\} = \begin{cases} (5n-9)/2 & \text{for } n = 3, 5, 7\\ (5n-8)/2 & \text{for } n = 4, 6, 8\\ n(n-5)/2 & \text{for } n \ge 9. \end{cases}$$

Proof. The graph G(n, 3) has 2n vertices and $\frac{n(n+3)}{2}$ edges. It suffices to consider the maximum and minimum value of e(0) such that the number of 0-and 1-vertices are both n.

Suppose *n* is even. We consider two cases.

Case (a). e(0) is maximum. Assume that t of the vertices v_j are labeled with 0 and the remaining (n - t) vertices v_j are labeled with 1. We consider four subcases.

Subcase (1). t = 0 or n. In this case, e(0) = n(n-1)/2, e(1) = 2n. So, $|e(0) - e(1)| = |\frac{n(n-5)}{2}|$.

Subcase (2). t = n/2. In this case, without loss of generality, $\max\{e(0)\}$ is attained if $f(v_j) = f(u_j) = 0$ for $j = 1, 2, \dots, n/2$, and all other vertices are labeled with 1. Hence, $\max\{e(0)\} = \frac{n}{2}(\frac{n}{2} - 1) + 2(n - 2) + 2$, and $|e(0) - e(1)| = n(\frac{n}{2} - 1) + 4n - 4 - \frac{n(n+3)}{2} = \frac{3n}{2} - 4$.

Subcase (3). $0 < t < \frac{n}{2}$. In this case, without loss of generality, $\max\{e(0)\}$ is attained if $f(v_j) = f(u_k) = 0$ for $j = 2, 3, \ldots, t + 1$, and $k = 1, 2, \ldots, n - t$, and all other vertices are labeled with 1. Hence, $\max\{e(0)\} = t(t-1)/2 + (n-t)(n-t-1)/2 + 2(n-1) + 2t + 2$, and $e(0) - e(1) = t(t-1) + (n-t)(n-t-1) + 8t - \frac{n(n+3)}{2} = 2t^2 + (8 - 2n)t + \frac{n(n-5)}{2}$. Therefore, maximal of $e(0) - e(1) = \frac{3n}{2} - 6$ or $\frac{n(n-9)}{2} + 10$ when $t = \frac{n}{2} - 1$ or t = 1, respectively. Hence, $\max|e(0) - e(1)| = \frac{3n}{2} - 6$ when n = 4, 6, 8, and $\max|e(0) - e(1)| = \frac{n(n-9)}{2} + 10$ when $n \ge 10$. Subcase (4). $\frac{n}{2} < t < n$. In this case, without loss of generality, $\max\{e(0)\}$ is attained if $f(v_j) = f(u_k) = 1$ when $j = 1, 2, \ldots, t, k = 1, 2, \ldots, n - t$, and all other vertices are labeled with 1. Hence, $\max\{e(0)\} = t(t-1)/2 + (n-t)(n-t-1)/2 + 2(n-1) + 2(n-t-1) + 2$ and $e(0) - e(1) = t(t-1) + (n-t)(n-t-1) + 8(n-t) - \frac{n(n+3)}{2} = 2t^2 - (8+2n)t + \frac{n(n+11)}{2}$. Therefore, maximal of $|e(0) - e(1)| = \frac{n(n-9)}{2} + 10$ or $\frac{3n}{2} - 6$ when t = n-1 or t = n/2+1, respectively. Hence, $\max|e(0) - e(1)| = \frac{3n}{2} - 6$ for n = 4, 6, 8, and $\max|e(0) - e(1)| = \frac{n(n-9)}{2} + 10$ when $n \ge 10$. Case (b). e(1) is maximum. Assume that t of the vertices v_j are labeled with 0 and the remaining (n - t) vertices of v_j are labeled with 1. We consider two subcases.

Subcase (1). t = 0 or n. In this case, e(0) = n(n-1)/2, e(1) = 2n. So, $|e(0) - e(1)| = |\frac{n(n-5)}{2}|$.

Subcase (2). 0 < t < n. In this case, without loss of generality, $\max\{e(1)\}$ is attained if $f(v_j) = f(u_k) = 1$ for $j = 1, 2, \dots, t$, $k = t + 1, t + 2, \dots, n$, and all other vertices are labeled with 1. Hence, $e(0) - e(1) = 2t(n-t) + 4n - 4 - \frac{n(n+3)}{2} = -2t^2 + 2nt + 4n - 4 - \frac{n(n+3)}{2}$ with maximal is attained when t = n/2. Therefore, maximal of $e(0) - e(1) = \frac{n^2}{2} + 4n - 4 - \frac{n(n+3)}{2} = \frac{5n-8}{2}$.

Suppose *n* is odd. We also consider two cases.

Case (a). e(0) is maximum. Assume that t of the vertices v_j are labeled with 0 and the remaining (n - t) vertices v_j are labeled with 1. We consider three subcases.

Subcase (1). t = 0 or n. In this case, e(0) = n(n-1)/2, e(1) = 2n. So, $|e(0) - e(1)| = |\frac{n(n-5)}{2}|$.

Download English Version:

https://daneshyari.com/en/article/4646484

Download Persian Version:

https://daneshyari.com/article/4646484

Daneshyari.com