On friendly index sets of the edge-gluing of complete graph and cycles

Gee-Choon Lau ${ }^{\text {a }}$, Zhen-Bin Gao ${ }^{\text {b }}$, Sin-Min Lee ${ }^{\text {c }}$, Guang-Yi Sun ${ }^{\text {b, }}$,
${ }^{a}$ Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (Segamat Campus), 85000 Johor, Malaysia
${ }^{\mathrm{b}}$ College of Science, Harbin Engineering University, Harbin, 150001, People's Republic of China
c 34803, Hollyhock Street, Union City, CA94587, USA
Received 27 January 2015; accepted 11 March 2016
Available online 15 July 2016

Abstract

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. A vertex labeling $f: V(G) \rightarrow Z_{2}$ induces an edge labeling $f^{+}: E(G) \rightarrow Z_{2}$ defined by $f^{+}(x y)=f(x)+f(y)$, for each edge $x y \in E(G)$. For $i \in Z_{2}$, let $v_{f}(i)=|\{v \in V(G): f(v)=i\}|$ and $e_{f}(i)=\left|\left\{e \in E(G): f^{+}(e)=i\right\}\right|$. We say f is friendly if $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$. We say G is cordial if $\left|e_{f}(1)-e_{f}(0)\right| \leq 1$ for a friendly labeling f. The set $F I(G)=\left\{\left|e_{f}(1)-e_{f}(0)\right|: f\right.$ is friendly $\}$ is called the friendly index set of G. In this paper, we investigate the friendly index sets of the edge-gluing of a complete graph K_{n} and n copies of cycles C_{3}. The cordiality of the graphs is also determined. © 2016 Publishing Services by Elsevier B.V. on behalf of Kalasalingam University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Vertex labeling; Friendly labeling; Cordiality

1. Introduction

Let G be a connected graph with vertex set $V(G)$ and edge set $E(G)$. A vertex labeling $f: V(G) \rightarrow Z_{2}$ induces an edge labeling $f^{+}: E(G) \rightarrow A$ defined by $f^{+}(x y)=f(x)+f(y)$, for each edge $x y \in E(G)$. For $i \in Z_{2}$, let $v_{f}(i)=|\{v \in V(G): f(v)=i\}|$ and $e_{f}(i)=\left|\left\{e \in E(G): f^{+}(e)=i\right\}\right|$. A labeling f of a graph G is said to be friendly if $\left|v_{f}(1)-v_{f}(0)\right| \leq 1$. For a friendly labeling f of a graph G, we define the friendly index of G under f as $\left|e_{f}(1)-e_{f}(0)\right|$. If $\left|e_{f}(1)-e_{f}(0)\right| \leq 1$, we say G is cordial [1]. The set $F I(G)=\left\{\left|e_{f}(1)-e_{f}(0)\right|: f\right.$ is friendly $\}$ is called the friendly index set of G [2]. For more related results and open problems, see [3-11]. When the context is clear, we will also drop the subscript f.

Note that if 0 or 1 is in $F I(G)$, then G is cordial. Thus, the concept of friendly index sets is a generalization of cordiality. Cairnie and Edwards [12] have determined the computational complexity of cordial labeling and Z_{k}-cordial labeling to be NP-complete. Thus, in general, it is difficult to determine the friendly index sets of graphs.

[^0]Keeping the above in view, in this paper, we investigate the full friendly index sets of the edge-gluing of a complete graph K_{n} and n copies of cycle C_{3}, denoted $G(n, 3)(n \geq 3)$. We let the vertices of K_{n} be $v_{j}(j=1,2, \ldots, n)$ and the 3 -cycles are given by $v_{i} v_{i+1} u_{i}(1 \leq i \leq n-1)$ and $v_{n} v_{1} u_{n}$. Consequently, the cordiality of $G(n, 3)$ is also determined.

The following results were obtained in [7].
Lemma 1.1. If G is any graph of q edges, then $F I(G) \subseteq\{0,2,4, \ldots, q\}$ if q is even, and $F I(G) \subseteq\{1,3,5, \ldots, q\}$ if q is odd.

Lemma 1.2. Any vertex labeling (not necessarily friendly) of a cycle must have e(1) equal to an even number.

2. Main results

Lemma 2.1. For $n \geq 3$, we have

$$
\max \{F I(G(n, 3))\}= \begin{cases}(5 n-9) / 2 & \text { for } n=3,5,7 \\ (5 n-8) / 2 & \text { for } n=4,6,8 \\ n(n-5) / 2 & \text { for } n \geq 9 .\end{cases}
$$

Proof. The graph $G(n, 3)$ has $2 n$ vertices and $\frac{n(n+3)}{2}$ edges. It suffices to consider the maximum and minimum value of $e(0)$ such that the number of 0 -and 1 -vertices are both n.
Suppose n is even. We consider two cases.
Case (a). $e(0)$ is maximum. Assume that t of the vertices v_{j} are labeled with 0 and the remaining $(n-t)$ vertices v_{j} are labeled with 1 . We consider four subcases.
Subcase (1). $t=0$ or n. In this case, $e(0)=n(n-1) / 2, e(1)=2 n$. So, $|e(0)-e(1)|=\left|\frac{n(n-5)}{2}\right|$.
Subcase (2). $t=n / 2$. In this case, without loss of generality, $\max \{e(0)\}$ is attained if $f\left(v_{j}\right)=f\left(u_{j}\right)=0$ for $j=1,2, \cdots, n / 2$, and all other vertices are labeled with 1 . Hence, $\max \{e(0)\}=\frac{n}{2}\left(\frac{n}{2}-1\right)+2(n-2)+2$, and $|e(0)-e(1)|=n\left(\frac{n}{2}-1\right)+4 n-4-\frac{n(n+3)}{2}=\frac{3 n}{2}-4$.
Subcase (3). $0<t<\frac{n}{2}$. In this case, without loss of generality, $\max \{e(0)\}$ is attained if $f\left(v_{j}\right)=f\left(u_{k}\right)=0$ for $j=2,3, \ldots, t+1$, and $k=1,2, \ldots, n-t$, and all other vertices are labeled with 1 . Hence, $\max \{e(0)\}=$ $t(t-1) / 2+(n-t)(n-t-1) / 2+2(n-1)+2 t+2$, and $e(0)-e(1)=t(t-1)+(n-t)(n-t-1)+8 t-\frac{n(n+3)}{2}=$ $2 t^{2}+(8-2 n) t+\frac{n(n-5)}{2}$. Therefore, maximal of $e(0)-e(1)=\frac{3 n}{2}-6$ or $\frac{n(n-9)}{2}+10$ when $t=\frac{n}{2}-1$ or $t=1$, respectively. Hence, $\max |e(0)-e(1)|=\frac{3 n}{2}-6$ when $n=4,6,8$, and $\max |e(0)-e(1)|=\frac{n(n-9)}{2}+10$ when $n \geq 10$. Subcase (4). $\frac{n}{2}<t<n$. In this case, without loss of generality, $\max \{e(0)\}$ is attained if $f\left(v_{j}\right)=f\left(u_{k}\right)=1$ when $j=1,2, \ldots, t, k=1,2, \ldots, n-t$, and all other vertices are labeled with 1 . Hence, $\max \{e(0)\}=t(t-1) / 2+(n-$ $t)(n-t-1) / 2+2(n-1)+2(n-t-1)+2$ and $e(0)-e(1)=t(t-1)+(n-t)(n-t-1)+8(n-t)-\frac{n(n+3)}{2}=$ $2 t^{2}-(8+2 n) t+\frac{n(n+11)}{2}$. Therefore, maximal of $|e(0)-e(1)|=\frac{n(n-9)}{2}+10$ or $\frac{3 n}{2}-6$ when $t=n-1$ or $t=n / 2+1$, respectively. Hence, $\max |e(0)-e(1)|=\frac{3 n}{2}-6$ for $n=4,6,8$, and $\max |e(0)-e(1)|=\frac{n(n-9)}{2}+10$ when $n \geq 10$. Case (b). $e(1)$ is maximum. Assume that t of the vertices v_{j} are labeled with 0 and the remaining ($n-t$) vertices of v_{j} are labeled with 1 . We consider two subcases.
Subcase (1). $t=0$ or n. In this case, $e(0)=n(n-1) / 2, e(1)=2 n$. So, $|e(0)-e(1)|=\left|\frac{n(n-5)}{2}\right|$.
Subcase (2). $0<t<n$. In this case, without loss of generality, $\max \{e(1)\}$ is attained if $f\left(v_{j}\right)=f\left(u_{k}\right)=1$ for $j=1,2, \cdots, t, k=t+1, t+2, \ldots, n$, and all other vertices are labeled with 1 . Hence, $e(0)-e(1)=$ $2 t(n-t)+4 n-4-\frac{n(n+3)}{2}=-2 t^{2}+2 n t+4 n-4-\frac{n(n+3)}{2}$ with maximal is attained when $t=n / 2$. Therefore, maximal of $e(0)-e(1)=\frac{n^{2}}{2}+4 n-4-\frac{n(n+3)}{2}=\frac{5 n-8}{2}$.
Suppose n is odd. We also consider two cases.
Case (a). $e(0)$ is maximum. Assume that t of the vertices v_{j} are labeled with 0 and the remaining ($n-t$) vertices v_{j} are labeled with 1 . We consider three subcases.
Subcase (1). $t=0$ or n. In this case, $e(0)=n(n-1) / 2, e(1)=2 n$. So, $|e(0)-e(1)|=\left|\frac{n(n-5)}{2}\right|$.

https://daneshyari.com/en/article/4646484

Download Persian Version:
https://daneshyari.com/article/4646484

Daneshyari.com

[^0]: Peer review under responsibility of Kalasalingam University.

 * Corresponding author.

 E-mail address: sunguangyi@hrbeu.edu.cn (G.-Y. Sun).

