ELSEVIER

Available online at www.sciencedirect.com
ScienceDirect

Domination criticality in product graphs

M.R. Chithra, A. Vijayakumar*
Department of Mathematics, Cochin University of Science and Technology, Cochin-682022, India
Received 27 May 2013; received in revised form 5 February 2014; accepted 15 March 2014
Available online 26 July 2015

Abstract

A connected dominating set is an important notion and has many applications in routing and management of networks. Graph products have turned out to be a good model of interconnection networks. This motivated us to study the Cartesian product of graphs G with connected domination number, $\gamma_{c}(G)=2,3$ and characterize such graphs. Also, we characterize the $k-\gamma$-vertex (edge) critical graphs and $k-\gamma_{c}$-vertex (edge) critical graphs for $k=2,3$ where γ denotes the domination number of G. We also discuss the vertex criticality in grids.

© 2015 Kalasalingam University. Production and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Cartesian product; Connected domination; Grid; Critical graphs

1. Introduction

A connected dominating set is an important notion and has many applications in routing and management of networks. Graph products have turned out to be a good model of interconnection networks, [1]. This motivated us to study the connected dominating set in product graphs.

Let $G=(V, E)$ be a simple connected graph with $|V|=n$ and $|E|=m$. The neighbourhood of a vertex u is the set $N(u)$ consisting of all vertices v which are adjacent to u. The closed neighbourhood of a vertex u is $N[u]=N(u) \cup\{u\}$. A set $S \subseteq V$ of vertices in a graph G is called a dominating set if every $v \in V$ is either an element of S or is adjacent to an element of S. The domination number, $\gamma(G)$ of a graph G is the minimum cardinality of a dominating set in G. A dominating set of G is a minimum dominating set if $|S|=\gamma(G)$. A dominating set S is connected if the induced subgraph $\langle S\rangle$ is connected. The minimum cardinality of a connected dominating set is the connected domination number, $\gamma_{c}(G)$. These notions are discussed in detail in [2]. Edge critical graphs are graphs in which the domination number decreases upon the addition of any missing edge while vertex critical graphs are graphs in which the domination number decreases upon the deletion of any vertex. Following the notations in [3,2] we say that G is $k-P$-edge critical if $P(G)=k$ and $P(G+e)<k$ for each edge $e \notin E(G)$ and G is $k-P$-vertex critical if $P(G)=k$ but for each vertex $v \in G, P(G-v)<k$ where $P \in\left\{\gamma, \gamma_{c}\right\}$.

[^0]The Cartesian product $G \square H$ of two graphs G and H is the graph with vertex set $V(G) \times V(H)$ and two vertices $u_{i} v_{j}, u_{x} v_{y}$ are adjacent if either $u_{i}=u_{x}$ and $v_{j}-v_{y} \in E(H)$ or $u_{i}-u_{x} \in E(G)$ and $v_{j}=v_{y}$. Also, $\gamma(G \square H) \leqslant \min \{\gamma(G)|H|, \gamma(H)|G|\}$ and $\gamma(G \square H) \geqslant \min \{|G|,|H|\},[4]$.

In [5] Y.C. Chen and Y.L Syu studied the minimum connected dominating set (MCDS) of the n-dimensional hypercubes and n-dimensional star graphs. In [6] Sumner et al. characterized $2-\gamma$-edge critical graphs and disconnected $3-\gamma$-edge critical graphs. For $k \geqslant 4$, a characterization of connected $k-\gamma$-edge critical graphs is not known. In [7] Chen et al. gave a characterization of $2-\gamma_{c}$-edge critical graphs and gave some conditions for graphs to be critical. In [8] Brigham et al. characterized $2-\gamma$-vertex critical graphs. In [9] Flandrin et al. studied some properties of $3-\gamma$ vertex critical graphs. Some properties of $3-\gamma_{c}$-vertex critical graphs are discussed in [10]. However for $k \geqslant 3$, no characterization of $k-\gamma$-vertex critical graphs and $k-\gamma_{c}$-vertex critical graphs is known. In [11] Goncalves et al. studied the domination number of grids, the Cartesian product of paths.

In [12] and [13] we have studied the problems of changing diameter by the addition or the deletion of some edges for the Cartesian product of graphs.

We denote the Cartesian product of graphs as $G \cong H_{1} \square H_{2}$ with $V\left(H_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n_{1}}\right\}, V\left(H_{2}\right)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n_{2}}\right\}$ and $V\left(H_{1} \square H_{2}\right)=\left\{u_{1} v_{1}, u_{1} v_{2}, \ldots, u_{n_{1}} v_{n_{2}}\right\}$. Since, $H_{1} \square K_{1} \cong H_{1}$ we assume that $H_{1}, H_{2} \neq K_{1}$.

In this paper, we characterize graphs $G \cong H_{1} \square H_{2}$ with $\gamma_{c}(G)=2$, 3. Also, we characterize the $k-\gamma$-vertex (edge) critical graphs and $k-\gamma_{c}$-vertex (edge) critical graphs for $k=2,3$ where γ and γ_{c} denote the domination number and the connected domination number of G respectively. We also discuss the vertex criticality in grids.

2. Domination critical graphs

Theorem 2.1. Let $G \cong H_{1} \square H_{2}$ be a connected graph. Then $\gamma(G)=2$ if and only if $H_{1}=K_{2}$ and H_{2} is either a C_{4} or has a universal vertex.

Proof. If $G \cong K_{2} \square C_{4}$, then a minimum dominating set of G is $D=\left\{u_{1} v_{1}, u_{2} v_{3}\right\}$.
If $G \cong K_{2} \square H_{2}$, where H_{2} has a universal vertex v_{i}, then a minimum dominating set of G is $D=\left\{u_{1} v_{i}, u_{2} v_{i}\right\}$. Hence, $\gamma(G)=2$ in both the cases.

Conversely suppose that $\gamma(G)=2$.
Suppose that both H_{1} and H_{2} are not complete graphs.
Then, $\gamma(G) \geqslant \min \left\{\left|V\left(H_{1}\right)\right|,\left|V\left(H_{2}\right)\right|\right\} \geqslant 3$.
Hence, at least one graph (say) H_{1} should be complete.
Let $G \cong K_{n_{1}} \square H_{2}$.
Suppose that H_{1} is a complete graph of order at least three. If H_{2} has a universal vertex, then a minimum dominating set of G contains vertices from each layer of G and $\gamma(G) \geqslant \min \left\{n_{1}, n_{2}\right\}$. If H_{2} does not have a universal vertex, then $\gamma\left(H_{2}\right) \geqslant 2$ and a minimum dominating set of G contains vertices from each layer of G and $\gamma(G) \geqslant n_{1}$. Thus, in both the cases $\gamma(G) \geqslant 3$. Hence, $n_{1}=2$. Thus, $G \cong K_{2} \square H_{2}$.

Let $n_{2} \geqslant 2$.
Then, $\gamma(G) \leqslant \min \left\{2 \gamma\left(H_{2}\right), n_{2} \gamma\left(K_{2}\right)\right\}=\min \left\{2 \gamma\left(H_{2}\right), n_{2}\right\}(1)$.
From (1), we have $\gamma(G)=2$, only if H_{2} has a universal vertex, since $n_{2} \geqslant 2$.
Next, we consider the case when $\gamma\left(H_{2}\right) \geqslant 2$.
Let $n_{2} \geqslant 5$.
Suppose that H_{2} contains a vertex v_{i} of degree $\left(n_{2}-2\right)$ and v_{i} is not adjacent to v_{j}. Then, $\gamma\left(H_{2}\right)=2$. Now, a minimum dominating set of G is $D=\left\{u_{1} v_{i}, u_{2} v_{i}, u_{1} v_{j}\right\}$ and $\gamma(G)=3$. If H_{2} contains a vertex of degree at most $\left(n_{2}-3\right)$, then $\gamma\left(H_{2}\right)=2$. Let v_{p} be a vertex of degree $\left(n_{2}-3\right)$ and is not adjacent to v_{q} and v_{r} in H_{2}. Then, in G the vertices $u_{1} v_{i}$ and $u_{2} v_{i}$ dominates $2 n_{2}-4$ vertices and the remaining four vertices $u_{1} v_{q}, u_{1} v_{r}, u_{2} v_{q}$ and $u_{2} v_{r}$ cannot be dominated by a single vertex. Hence, in these cases $\gamma(G) \geqslant 3$. Thus, $n_{2} \leqslant 4$.

Now, by an exhaustive verification of all graphs with $n_{2} \leqslant 4$ it follows that $G \cong K_{2} \square C_{4}$.
Corollary 2.2. Let $G \cong H_{1} \square H_{2}$ be a connected graph. Then G is $2-\gamma$-vertex critical if and only if $G=C_{4}$.
Proof. In Theorem 2.1 we have characterized the Cartesian product of graphs with $\gamma(G)=2$. Hence, we need to prove the theorem only for such G s.

https://daneshyari.com/en/article/4646500

Download Persian Version:
https://daneshyari.com/article/4646500

Daneshyari.com

[^0]: Peer review under responsibility of Kalasalingam University

 * Corresponding author.

 E-mail addresses: chithramohanr@gmail.com (M.R. Chithra), vijay@cusat.ac.in (A. Vijayakumar).

