Total restrained reinforcement in graphs

Nader Jafari Rad a,⁎, Lutz Volkmann b

a Department of Mathematics, Shahrood University of Technology, Shahrood, Iran
b Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany

Received 26 December 2013; accepted 16 February 2016
Available online 9 March 2016

Abstract

In this paper we initiate the study of total restrained reinforcement in graphs. The total restrained reinforcement number in a graph G with no isolated vertex, is the minimum number of edges that have to be added to G so that the resulting graph has total restrained domination number less than total restrained domination number of G. We obtain sharp bounds, exact values and characterization for the total restrained reinforcement number of a graph.

© 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Domination; Total restrained domination; Reinforcement

1. Introduction

Let G = (V (G), E(G)) be a simple graph of order n. We denote the open neighborhood of a vertex v of G by NG(v), or just N(v), and its closed neighborhood by NG[v] = N[v]. For a vertex set S ⊆ V (G), N(S) = ∪v∈S N(v) and N[S] = ∪v∈S N[v]. Let S be a set of vertices, and let u ∈ S. We define the private neighbor set of u, with respect to S, to be pu(u, S) = N[u] \ N[S \ {u}]. A set of vertices S in G is a dominating set, if N[S] = V (G). The domination number, γ(G) of G, is the minimum cardinality of a dominating set of G. A set of vertices S in G is a total dominating set, if N(S) = V (G). The total domination number, γt(G) of G, is the minimum cardinality of a total dominating set of G. A set S ⊆ V (G) is a total restrained dominating set, denoted TRDS, if every vertex is adjacent to a vertex in S and every vertex in V (G) \ S is also adjacent to a vertex in V (G) \ S. The total restrained domination number of G, denoted γtr(G), is the minimum cardinality of a total restrained dominating set of G. A TRDS of cardinality γtr(G) is called a γtr(G)-set. For references on domination in graphs see [1–6].

If S is a subset of V (G), then we denote by G[S] the subgraph of G induced by S. We recall that a leaf in a graph is a vertex of degree one, and a support vertex is one that is adjacent to a leaf. Let S(G) be the set of all support vertices in a graph G.

Kok and Mynhardt [7] introduced the reinforcement number r(G) of a graph G as the minimum number of edges that have to be added to G so that the resulting graph G′ satisfies γ(G′) < γ(G). They also defined r(G) = 0 if

⁎ Corresponding author.
E-mail addresses: n.jafarirad@gmail.com (N.J. Rad), volkm@math2.rwth-aachen.de (L. Volkmann).

Peer review under responsibility of Kalasalingam University.

http://dx.doi.org/10.1016/j.akcej.2016.02.003
0972-8600/© 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
This idea was further considered for some other varieties of domination such as fractional domination, independent domination, and total domination, [8–11].

In this paper we study reinforcement by considering a variation based on total restrained domination. The total restrained reinforcement number \(r_{tr}(G) \) of a graph \(G \) with no isolated vertex, is the minimum number of edges that have to be added to \(G \) so that the resulting graph \(G' \) satisfies \(\gamma_{tr}(G') < \gamma_{tr}(G) \). We also define \(r_{tr}(G) = 0 \) if \(\gamma_{tr}(G) = 2 \).

With \(K_n \) we denote the complete graph on \(n \) vertices, with \(P_n \) the path on \(n \) vertices, and with \(C_n \) the cycle of length \(n \). For two positive integers \(m, n \), the complete bipartite graph \(K_{m,n} \) is the graph with partition \(V(G) = V_1 \cup V_2 \) such that \(|V_1| = m, |V_2| = n \) and every two vertices belonging to different partite sets are adjacent to each other. Obviously, for any two integers \(m, n \geq 2 \), we have \(r_{tr}(K_n) = r_{tr}(K_{m,n}) = r_{tr}(P_n) = r_{tr}(F_n) = 0 \), where \(W_n \) is the wheel and \(F_n \) is the fan of order \(n \geq 4 \).

2. Exact values

We begin with the following proposition.

Proposition 2.1. Let \(G \) be a graph of order \(n \geq 4 \). Then \(r_{tr}(G) = 0 \) if and only if \(\gamma_{tr}(G) = 2 \).

Proof. If \(\gamma_{tr}(G) = 2 \), then trivially \(r_{tr}(G) = 0 \). Assume that \(\gamma_{tr}(G) > 2 \). By adding to \(G \) all edges belonging to \(E(G) \), we obtain a complete graph \(K_n \). Since \(n \geq 4 \), we deduce that \(\gamma_{tr}(K_n) = 2 \), and the result follows.

In the following we obtain the total restrained reinforcement number for paths and cycles.

Observation 2.2 ([11]).

1. For \(n \geq 2 \),
 \[
 \gamma_{tr}(P_n) = n - 2 \left\lfloor \frac{n-2}{4} \right\rfloor .
 \]

2. For \(n \geq 3 \),
 \[
 \gamma_{tr}(C_n) = n - 2 \left\lfloor \frac{n}{4} \right\rfloor .
 \]

Proposition 2.3. Let \(n \geq 2 \) be an integer. Then

\[
\gamma_{tr}(P_n) = \begin{cases}
0, & \text{for } n \equiv 2 \pmod{4} \\
2, & \text{for } n \equiv 0 \pmod{4} \text{ and } n \geq 6,
\end{cases}
\]

\[
r_{tr}(P_n) = \begin{cases}
0, & \text{for } n \equiv 2 \pmod{4}, \\
2, & \text{for } n \equiv 0 \pmod{4} \text{ and } n \geq 6,
\end{cases}
\]

Proof. The result is obvious for \(n \leq 3 \). Let now \(n \geq 4 \) and \(G = P_n = v_1v_2 \ldots v_n \). For \(n \equiv 0, 1 \pmod{4} \), by **Observation 2.2**, \(\gamma_{tr}(G + v_1v_n) < \gamma_{tr}(G) \), giving that \(r_{tr}(G) = 1 \). For \(n \equiv 3 \pmod{4} \), let \(n = 4k + 3 \). Then \(\{v_{4i+1}, v_{4i+2} : 0 \leq i \leq k-1\} \cup \{v_n, v_{n-1}\} \) is a TRDS for \(G + v_nv_{n-3} \), giving that \(r_{tr}(G) = 1 \). Thus we assume that \(n \equiv 2 \pmod{4} \).

There is an integer \(k \) such that \(n = 4k + 2 \). By **Observation 2.2**, \(\gamma_{tr}(G) = 2k + 2 \). We show that \(r_{tr}(G) \neq 1 \). Suppose to the contrary that \(\gamma_{tr}(G + e) < \gamma_{tr}(G) \) for some \(e \in V(G) \). By **Observation 2.2**, \(e \neq v_1v_n \). Let \(e = xy \), \(H = G + e \), and let \(S \) be a \(\gamma_{tr}(H) \)-set. Without loss of generality, assume that \(|S| = 2k + 1 \). Then a component of \(H[S] \) has more than two vertices. In order for \(S \) to dominate the maximum number of vertices, we may assume that a component \(G_1 \) of \(H[S] \) has three vertices, and any other component is a path on two vertices. If \(\{v_1, v_n\} \cap \{x, y\} = \emptyset \), then \(V(G_1) \) dominates at most 7 vertices of \(H \) and any other component of \(H[S] \) dominates at most 4 vertices of \(H \). But clearly \(\{v_1, v_2, v_{n-1}, v_n\} \subseteq S \). Now \(S \) dominates at most \(7 + 4 \left\lfloor \frac{|S|-3}{2} \right\rfloor - 2 = 4k + 1 < n \) vertices of \(H \), a contradiction. Thus we assume that \(\{v_1, v_n\} \cap \{x, y\} \neq \emptyset \). If \(\{v_1, v_n\} = \{x, y\} \), then \(H = C_n \) and by **Observation 2.2**, \(\gamma_{tr}(H) = 2k + 2 \), a contradiction. Thus, without loss of generality, we may assume that \(v_1 = x \) and \(v_n \neq y \). Then \(V(G_1) \) dominates at most 6 vertices of \(H \) and any other component of \(H[S] \) dominates at most 4 vertices of \(H \). But clearly \(\{v_{n-1}, v_n\} \subseteq S \). Thus \(S \) dominates at most \(6 + 4 \left\lfloor \frac{|S|-3}{2} \right\rfloor - 1 < n \) vertices of \(H \), a contradiction. Thus \(r_{tr}(G) \geq 2 \). On the other hand if \(D \) is a \(\gamma_{tr}(G) \)-set, then \(D - \{v_1, v_n\} \) is a TRDS for \(G + v_1v_n + v_2v_{n-1} \). Hence \(r_{tr}(G) = 2 \).