

Available online at www.sciencedirect.com

ScienceDirect

AKCE International Journal of Graphs and Combinatorics

AKCE International Journal of Graphs and Combinatorics 12 (2015) 133-140

www.elsevier.com/locate/akcej

On graphs whose graphoidal domination number is one

B.D. Acharya^a, Purnima Gupta^b, Deepti Jain^{b,*}

^a Wrangler Dr. D.C. Pavate Institute of Mathematical Sciences (PIMSci), Karnatak University, Pavate Nagar, Dharwad, Karnataka, India

^b Department of Mathematics, Sri Venkateswara College, University of Delhi, Delhi, India

Received 14 January 2014; received in revised form 10 January 2015; accepted 6 July 2015 Available online 2 December 2015

Abstract

Given a graph G=(V,E), a set ψ of non-trivial paths, which are not necessarily open, called ψ -edges, is called a *graphoidal cover of G* if it satisfies the following conditions: (GC-1) Every vertex of G is an internal vertex of at most one path in ψ , and (GC-2) every edge of G is in exactly one path in ψ ; the ordered pair (G,ψ) is called a *graphoidally covered graph*. Two vertices u and v of G are ψ -adjacent if they are the ends of an open ψ -edge. A set D of vertices in (G,ψ) is ψ -dominating (in short ψ -dom set) if every vertex of G is either in D or is ψ -adjacent to a vertex in D. Let $\gamma_{\psi}(G) = \inf\{|D| : Disa\psi - domsetof G\}$. A ψ -dom set D with $|D| = \gamma_{\psi}(G)$ is called a $\gamma_{\psi}(G)$ -set. The *graphoidal domination number of a graph G* denoted by $\gamma_{\psi}^{0}(G)$ is defined as $\inf\{\gamma_{\psi}(G) : \psi \in \mathcal{G}_{G}\}$. Let G be a connected graph with cyclomatic number $\mu(G) = (q-p+1)$. In this paper, we characterize graphs for which there exists a non-trivial graphoidal cover ψ such that $\gamma_{\psi}(G) = 1$ and $\gamma_{\psi}(G) = 1$ for each $\gamma_{\psi}(G) = 1$ and $\gamma_{\psi}(G) = 1$ for each $\gamma_{\psi}(G) = 1$ and $\gamma_{\psi}(G) = 1$ for each $\gamma_{\psi}(G) = 1$ for each $\gamma_{\psi}(G) = 1$ and $\gamma_{\psi}(G) = 1$ for each $\gamma_{\psi}(G) = 1$ and $\gamma_{\psi}(G) = 1$ for each $\gamma_{\psi}(G) = 1$ fo

© 2015 Kalasalingam University. Production and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Graphoidal cover; Graphoidally covered graph; ψ -domination

1. Introduction

Throughout this paper, we shall follow the notation and terminology of Harary [1] and West [2] for graphs, unless specifically defined otherwise. Also, all graphs considered in this paper are simple, finite, undirected and connected. Let G = (V, E) be a graph. The number of vertices and number of edges of G are denoted by P and P respectively. If $P = (u_0, u_1, u_2, \ldots, u_n)$ is a path, not necessarily open, in P then P and P are called *external or end-vertices* of P and P and P are called *internal vertices* of P and P are not necessarily open, called P and P are called *internal vertices* of P and it is satisfies the following conditions: P and P are vertex of P is an internal vertex of at most one path in P, and P are ordered pair P and it is called a graphoidally covered graph. The set of all graphoidal covers of a graph P is denoted by P and it is study of graphoidal covers, the reader can refer to [3,4].

E-mail addresses: devadas.acharya@gmail.com (B.D. Acharya), purnimachandni@rediffmail.com (P. Gupta), djain@svc.ac.in (D. Jain).

Peer review under responsibility of Kalasalingam University.

^{*} Corresponding author.

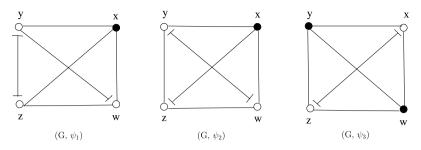


Fig. 1. $\psi_1 = \{(x, z, w, x), (x, y, w), (y, z)\}, \ \psi_2 = \{(x, z), (y, w), (x, y, z, w)\}, \ \psi_3 = \{(x, z), (y, w), (y, x, w), (y, z, w)\}.$

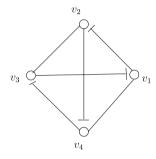


Fig. 2. $\psi = \{(v_1, v_3, v_2, v_4), (v_3, v_4, v_1, v_2)\}.$

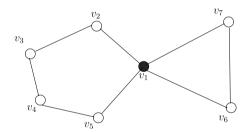


Fig. 3. $\psi_1 = \{(v_1, v_2, v_3, v_4, v_5, v_1), (v_1, v_6, v_7, v_1)\}.$

Fig. 1 exhibits a graphoidal cover ψ on a finite graph G where a black node denotes a vertex which is not internal to any ψ -edge, a small line segment attached to an end of an edge denotes an end vertex of the ψ -edge to which the edge belongs and a white vertex represents an internal vertex of the unique path to which it belongs.

Clearly, for any graph G = (V, E), the set E := E(G) of its edges (paths of length one) is itself a graphoidal cover of G, which we shall refer to as the *trivial graphoidal cover* of G. K_2 is the only graph having $\mathcal{G}_G = \{E(G)\}$. A graphoidal cover ψ of a graph containing at least one ψ -edge of length greater than one is called a *non-trivial graphoidal cover*. In Fig. 2, ψ is an example of a non-trivial graphoidal cover of the graph G.

The notion of domination in graphs is extended to graphoidal covers of a graph as follows. Two vertices u and v in a graphoidally covered graph (G, ψ) are said to be ψ -adjacent if they are the ends of an open ψ -edge. A set D of vertices in (G, ψ) is ψ -dominating (in short ψ -dom set) if every vertex of G is either in D or is ψ -adjacent to a vertex in D. We denote by $\mathcal{D}_{\psi}(G)$ the set of all ψ -dom sets of (G, ψ) . Clearly the vertex set V(G) of G is a ψ -dom set for any $\psi \in \mathcal{G}_G$ so that $V(G) \in \mathcal{D}_{\psi}(G)$ for any $\psi \in \mathcal{G}_G$; therefore, we call V(G) the trivial ψ -dom set of (G, ψ) . A graphoidal cover ψ such that $\mathcal{D}_{\psi}(G) = \{V(G)\}$ is called a *totally disconnecting graphoidal cover* of G in the sense that no two vertices in G are then ψ -adjacent, and the corresponding graphoidally covered graph (G, ψ) is said to be ψ -independent. Fig. 3 is an example of such a graphoidal cover of a graph. A ψ -dom set D of (G, ψ) is said to be proper if $V(G) - D \neq \emptyset$. Then $\gamma_{\psi}(G) = \inf\{|D| : D \in \mathcal{D}_{\psi}(G)\}$ is called ψ -domination number of G. A ψ -dom set D with $|D| = \gamma_{\psi}(G)$ is called a $\gamma_{\psi}(G)$ -set. For $\psi = E(G)$, $\gamma_{\psi}(G)$ is the usual domination number of G, denoted by $\gamma(G)$.

Download English Version:

https://daneshyari.com/en/article/4646533

Download Persian Version:

https://daneshyari.com/article/4646533

<u>Daneshyari.com</u>