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Abstract

A Radio Mean labeling of a connected graph G is a one to one map f from the vertex set V (G) to the set of natural numbers N

such that for two distinct vertices u and v of G, d (u, v) +


f (u)+ f (v)

2


≥ 1 + diam (G). The radio mean number of f , rmn ( f ),

is the maximum number assigned to any vertex of G.The radio mean number of G, rmn (G) is the minimum value of rmn ( f )

taken over all radio mean labelings f of G. In this paper we find the radio mean number of graphs with diameter three, lotus inside
a circle, Helms and Sunflower graphs.
c⃝ 2015 Kalasalingam University. Production and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Throughout this paper we consider finite, simple, undirected and connected graphs. V (G) and E (G) respectively
denote the vertex set and edge set of G. Also, for a graph G, p and q denote the number of vertices and edges
respectively. In 2001, Chartrand et al. [1] defined the concept of radio labeling of G. Radio labeling of graphs is
motivated by restrictions inherent in assigning channel frequencies for radio transmitters [1]. Radio labeling behavior
of several graphs are studied by Kchikech et al. [2,3], Khennoufa et al. [4], Liu et al. [5–9], Van den Heuvel et al. [10]
and Zhang [11]. Motivated by the radio labeling we define radio mean labeling of G. A radio mean labeling is a one
to one mapping f from V (G) to N satisfying the condition

d (u, v) +


f (u) + f (v)

2


≥ 1 + diam (G) (1.1)

for every u, v ∈ V (G). The span of a labeling f is the maximum integer that f maps to a vertex of G. The radio
mean number of G, rmn (G) is the lowest span taken over all radio mean labelings of the graph G. The condition
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(1.1) is called radio mean condition. In this paper we determine the radio mean number of some graphs like graphs
with diameter three, lotus inside a circle, gear graph, Helms and Sunflower graphs. Let x be any real number. Then
⌈x⌉ stands for smallest integer greater than or equal to x . Terms and definitions not defined here are followed from
Harary [12] and Gallian [13].

2. Main results

Since any radio mean labeling f is one to one, it follows that rmn(G) ≥ |V (G)|. Further if diam(G) = d and
V (G) = {v1, v2, . . . , vp}, then f : V (G) → N defined by f (vi ) = d + i −2, 1 ≤ i ≤ p, is a radio mean labeling and
hence rmn(G) ≤ p + d − 2. In particular for any graph with d = 2, we have rmn(G) = p. Now if G is any graph
with diameter 3 and if (u1, u2, u3, u4) is a diametrical path then f defined by f (u1) = 1, f (u4) = 2, f (u3) = 3
and f (v) for remaining vertices are arbitrarily assigned the labels 4, 5, . . . , p, then it can be easily verified that f is a
radio mean labeling of G and hence rmn(G) = p. Hence the following problem naturally arises:

Problem 2.1. Characterize graphs G for which rmn(G) = p.

The following theorem gives another family of graphs G with rmn(G) = p.
The sunflower graph SFn is obtained from a wheel with the central vertex v0 and the cycle Cn : v1v2 . . . vnv1 and

additional vertices w1w2 . . . wn where wi is joined by edges to vi , vi+1 where vi+1 is taken modulo n.

Theorem 2.1. The radio mean number of the sunflower graph SFn is its order.

Proof. For n ≤ 5, since diam(SF3) = 2 and diam(SF4) = diam(SF5) = 3, the result follows. Assume n ≥ 6.
It is clear that diam(SFn) = 4. Define the function f with co domain {1, 2, . . . , 2n + 1} as follows: f (w1) = 1,
f (w2) = n, f (w3) = 2, f (wi ) = i − 1, 4 ≤ i ≤ n, f (v0) = n + 1 and f (vi ) = n + 1 + i , 1 ≤ i ≤ n. We must show
that the radio mean condition

d(u, v) +


f (u) + f (v)

2


≥ 5 (2.1)

for every pair of vertices (u, v) where u ≠ v.

Now, if either f (u) ≥ 6 or f (v) ≥ 6, then


f (u)+ f (v)
2


≥ 4 and hence (2.1) trivially holds. Hence let 1 ≤ f (u),

f (v) ≤ 5. Clearly u, v ∈ {w1, w3, w4, w5, w6}. If u = wi and v = w j and |i − j | > 1, then d(u, v) = 3 or 4 and
f (u)+ f (v)

2


≥ 2. Therefore (2.1) holds. If u = wi , v = wi+1, then d(u, v) = 2 and


f (u)+ f (v)

2


≥ 3. Hence (2.1)

holds. �

The Helm Hn is obtained from a wheel Wn by attaching a pendent edge at each vertex of the cycle Cn .

Theorem 2.2. The radio mean number of a Helm Hn is 2n + 1.

Proof. Let Wn = Cn + K1 where Cn is the cycle u1u2 . . . unu1 and V (K1) = {u0}. Let wi be the pendent vertex
adjacent to ui (1 ≤ i ≤ n). Since diam (H3) = 3, the result follows. Now let n ≥ 4. Then diam(Hn) = 4. We define
f on V as follows: f (wi ) = i for all i with 1 ≤ i ≤ n and f (ui ) = n + 1 + i for all i with 0 ≤ i ≤ n.

Since diam(Hn) = 4, to prove that f is a radio mean labeling, we need to prove that

d(u, v) +


f (u) + f (v)

2


≥ 5 (2.2)

for every pair of vertices (u, v) where u ≠ v.

If either f (u) ≥ 6 or f (v) ≥ 6, then


f (u)+ f (v)
2


≥ 4 and hence (2.2) trivially holds. Hence let 1 ≤ f (u), f (v) ≤

5. If n ≥ 5, it follows that u, v ∈ {w1, w2, w3, w4, w5}. If u = wi , v = w j and |i − j | > 1, then d(u, v) = 4 and

(2.2) holds. If u = wi and v = wi+1, then d(u, v) = 3 and


f (u)+ f (v)
2


≥ 2. Hence (2.2) holds. Thus f is a radio

mean labeling of Hn . If n = 4, then u, v ∈ {w1, w2, w3, w4, u0} and since f (u0) = 5, the inequality (2.2) holds. �
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