ELSEVIER

Available online at www.sciencedirect.com
ScienceDirect

Radio mean labeling of a graph

R. Ponraj ${ }^{\text {a,* }}$, S. Sathish Narayanan ${ }^{\text {a }}$, R. Kala ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Sri Paramakalyani College, Alwarkurichi 627412, India
${ }^{\mathrm{b}}$ Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627012, India

Received 27 May 2014; received in revised form 25 October 2015; accepted 4 November 2015
Available online 14 December 2015

Abstract

A Radio Mean labeling of a connected graph G is a one to one map f from the vertex set $V(G)$ to the set of natural numbers N such that for two distinct vertices u and v of $G, d(u, v)+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 1+\operatorname{diam}(G)$. The radio mean number of $f, r m n(f)$, is the maximum number assigned to any vertex of G.The radio mean number of $G, r m n(G)$ is the minimum value of $r m n(f)$ taken over all radio mean labelings f of G. In this paper we find the radio mean number of graphs with diameter three, lotus inside a circle, Helms and Sunflower graphs. © 2015 Kalasalingam University. Production and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0).

Keywords: Radio labeling; Diameter; Wheel; Helms

1. Introduction

Throughout this paper we consider finite, simple, undirected and connected graphs. $V(G)$ and $E(G)$ respectively denote the vertex set and edge set of G. Also, for a graph G, p and q denote the number of vertices and edges respectively. In 2001, Chartrand et al. [1] defined the concept of radio labeling of G. Radio labeling of graphs is motivated by restrictions inherent in assigning channel frequencies for radio transmitters [1]. Radio labeling behavior of several graphs are studied by Kchikech et al. [2,3], Khennoufa et al. [4], Liu et al. [5-9], Van den Heuvel et al. [10] and Zhang [11]. Motivated by the radio labeling we define radio mean labeling of G. A radio mean labeling is a one to one mapping f from $V(G)$ to N satisfying the condition

$$
\begin{equation*}
d(u, v)+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 1+\operatorname{diam}(G) \tag{1.1}
\end{equation*}
$$

for every $u, v \in V(G)$. The span of a labeling f is the maximum integer that f maps to a vertex of G. The radio mean number of $G, r m n(G)$ is the lowest span taken over all radio mean labelings of the graph G. The condition

[^0](1.1) is called radio mean condition. In this paper we determine the radio mean number of some graphs like graphs with diameter three, lotus inside a circle, gear graph, Helms and Sunflower graphs. Let x be any real number. Then $\lceil x\rceil$ stands for smallest integer greater than or equal to x. Terms and definitions not defined here are followed from Harary [12] and Gallian [13].

2. Main results

Since any radio mean labeling f is one to one, it follows that $r m n(G) \geq|V(G)|$. Further if $\operatorname{diam}(G)=d$ and $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$, then $f: V(G) \rightarrow \mathbb{N}$ defined by $f\left(v_{i}\right)=d+i-2,1 \leq i \leq p$, is a radio mean labeling and hence $\operatorname{rmn}(G) \leq p+d-2$. In particular for any graph with $d=2$, we have $r m n(G)=p$. Now if G is any graph with diameter 3 and if $\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ is a diametrical path then f defined by $f\left(u_{1}\right)=1, f\left(u_{4}\right)=2, f\left(u_{3}\right)=3$ and $f(v)$ for remaining vertices are arbitrarily assigned the labels $4,5, \ldots, p$, then it can be easily verified that f is a radio mean labeling of G and hence $r m n(G)=p$. Hence the following problem naturally arises:

Problem 2.1. Characterize graphs G for which $r m n(G)=p$.
The following theorem gives another family of graphs G with $r m n(G)=p$.
The sunflower graph $S F_{n}$ is obtained from a wheel with the central vertex v_{0} and the cycle $C_{n}: v_{1} v_{2} \ldots v_{n} v_{1}$ and additional vertices $w_{1} w_{2} \ldots w_{n}$ where w_{i} is joined by edges to v_{i}, v_{i+1} where v_{i+1} is taken modulo n.

Theorem 2.1. The radio mean number of the sunflower graph $S F_{n}$ is its order.
Proof. For $n \leq 5$, since $\operatorname{diam}\left(S F_{3}\right)=2$ and $\operatorname{diam}\left(S F_{4}\right)=\operatorname{diam}\left(S F_{5}\right)=3$, the result follows. Assume $n \geq 6$. It is clear that $\operatorname{diam}\left(S F_{n}\right)=4$. Define the function f with co domain $\{1,2, \ldots, 2 n+1\}$ as follows: $f\left(w_{1}\right)=1$, $f\left(w_{2}\right)=n, f\left(w_{3}\right)=2, f\left(w_{i}\right)=i-1,4 \leq i \leq n, f\left(v_{0}\right)=n+1$ and $f\left(v_{i}\right)=n+1+i, 1 \leq i \leq n$. We must show that the radio mean condition

$$
\begin{equation*}
d(u, v)+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 5 \tag{2.1}
\end{equation*}
$$

for every pair of vertices (u, v) where $u \neq v$.
Now, if either $f(u) \geq 6$ or $f(v) \geq 6$, then $\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 4$ and hence (2.1) trivially holds. Hence let $1 \leq f(u)$, $f(v) \leq 5$. Clearly $u, v \in\left\{w_{1}, w_{3}, w_{4}, w_{5}, w_{6}\right\}$. If $u=w_{i}$ and $v=w_{j}$ and $|i-j|>1$, then $d(u, v)=3$ or 4 and $\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 2$. Therefore (2.1) holds. If $u=w_{i}, v=w_{i+1}$, then $d(u, v)=2$ and $\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 3$. Hence (2.1) holds.

The Helm H_{n} is obtained from a wheel W_{n} by attaching a pendent edge at each vertex of the cycle C_{n}.
Theorem 2.2. The radio mean number of a Helm H_{n} is $2 n+1$.
Proof. Let $W_{n}=C_{n}+K_{1}$ where C_{n} is the cycle $u_{1} u_{2} \ldots u_{n} u_{1}$ and $V\left(K_{1}\right)=\left\{u_{0}\right\}$. Let w_{i} be the pendent vertex adjacent to $u_{i}(1 \leq i \leq n)$. Since diam $\left(H_{3}\right)=3$, the result follows. Now let $n \geq 4$. Then diam $\left(H_{n}\right)=4$. We define f on V as follows: $f\left(w_{i}\right)=i$ for all i with $1 \leq i \leq n$ and $f\left(u_{i}\right)=n+1+i$ for all i with $0 \leq i \leq n$.

Since $\operatorname{diam}\left(H_{n}\right)=4$, to prove that f is a radio mean labeling, we need to prove that

$$
\begin{equation*}
d(u, v)+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 5 \tag{2.2}
\end{equation*}
$$

for every pair of vertices (u, v) where $u \neq v$.
If either $f(u) \geq 6$ or $f(v) \geq 6$, then $\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 4$ and hence (2.2) trivially holds. Hence let $1 \leq f(u), f(v) \leq$ 5. If $n \geq 5$, it follows that $u, v \in\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right\}$. If $u=w_{i}, v=w_{j}$ and $|i-j|>1$, then $d(u, v)=4$ and (2.2) holds. If $u=w_{i}$ and $v=w_{i+1}$, then $d(u, v)=3$ and $\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 2$. Hence (2.2) holds. Thus f is a radio mean labeling of H_{n}. If $n=4$, then $u, v \in\left\{w_{1}, w_{2}, w_{3}, w_{4}, u_{0}\right\}$ and since $f\left(u_{0}\right)=5$, the inequality (2.2) holds.

https://daneshyari.com/en/article/4646545

Download Persian Version:

https://daneshyari.com/article/4646545

Daneshyari.com

[^0]: Peer review under responsibility of Kalasalingam University.

 * Corresponding author.

 E-mail addresses: ponrajmaths@gmail.com (R. Ponraj), sathishrvss@gmail.com (S.S. Narayanan), karthipyi91@yahoo.co.in (R. Kala).

