

Available online at www.sciencedirect.com

AKCE International Journal of Graphs and Combinatorics

AKCE International Journal of Graphs and Combinatorics 12 (2015) 224-228

www.elsevier.com/locate/akcej

Radio mean labeling of a graph

R. Ponraj^{a,*}, S. Sathish Narayanan^a, R. Kala^b

^a Department of Mathematics, Sri Paramakalyani College, Alwarkurichi 627412, India ^b Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627012, India

Received 27 May 2014; received in revised form 25 October 2015; accepted 4 November 2015 Available online 14 December 2015

Abstract

A Radio Mean labeling of a connected graph *G* is a one to one map *f* from the vertex set *V*(*G*) to the set of natural numbers *N* such that for two distinct vertices *u* and *v* of *G*, $d(u, v) + \left\lceil \frac{f(u)+f(v)}{2} \right\rceil \ge 1 + \text{diam}(G)$. The radio mean number of *f*, rmn(f), is the maximum number assigned to any vertex of *G*. The radio mean number of *G*, rmn(G) is the minimum value of rmn(f) taken over all radio mean labelings *f* of *G*. In this paper we find the radio mean number of graphs with diameter three, lotus inside a circle, Helms and Sunflower graphs.

© 2015 Kalasalingam University. Production and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Radio labeling; Diameter; Wheel; Helms

1. Introduction

Throughout this paper we consider finite, simple, undirected and connected graphs. V(G) and E(G) respectively denote the vertex set and edge set of G. Also, for a graph G, p and q denote the number of vertices and edges respectively. In 2001, Chartrand et al. [1] defined the concept of radio labeling of G. Radio labeling of graphs is motivated by restrictions inherent in assigning channel frequencies for radio transmitters [1]. Radio labeling behavior of several graphs are studied by Kchikech et al. [2,3], Khennoufa et al. [4], Liu et al. [5–9], Van den Heuvel et al. [10] and Zhang [11]. Motivated by the radio labeling we define radio mean labeling of G. A radio mean labeling is a one to one mapping f from V(G) to N satisfying the condition

$$d(u,v) + \left\lceil \frac{f(u) + f(v)}{2} \right\rceil \ge 1 + \text{diam} (G)$$

$$(1.1)$$

for every $u, v \in V(G)$. The span of a labeling f is the maximum integer that f maps to a vertex of G. The radio mean number of G, rmn(G) is the lowest span taken over all radio mean labelings of the graph G. The condition

* Corresponding author.

E-mail addresses: ponrajmaths@gmail.com (R. Ponraj), sathishrvss@gmail.com (S.S. Narayanan), karthipyi91@yahoo.co.in (R. Kala).

http://dx.doi.org/10.1016/j.akcej.2015.11.019

Peer review under responsibility of Kalasalingam University.

^{0972-8600/© 2015} Kalasalingam University. Production and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(1.1) is called radio mean condition. In this paper we determine the radio mean number of some graphs like graphs with diameter three, lotus inside a circle, gear graph, Helms and Sunflower graphs. Let x be any real number. Then [x] stands for smallest integer greater than or equal to x. Terms and definitions not defined here are followed from Harary [12] and Gallian [13].

2. Main results

Since any radio mean labeling f is one to one, it follows that rmn(G) > |V(G)|. Further if diam(G) = d and $V(G) = \{v_1, v_2, \dots, v_p\}$, then $f: V(G) \to \mathbb{N}$ defined by $f(v_i) = d + i - 2, 1 \le i \le p$, is a radio mean labeling and hence $rmn(G) \le p + d - 2$. In particular for any graph with d = 2, we have rmn(G) = p. Now if G is any graph with diameter 3 and if (u_1, u_2, u_3, u_4) is a diametrical path then f defined by $f(u_1) = 1$, $f(u_4) = 2$, $f(u_3) = 3$ and f(v) for remaining vertices are arbitrarily assigned the labels 4, 5, ..., p, then it can be easily verified that f is a radio mean labeling of G and hence rmn(G) = p. Hence the following problem naturally arises:

Problem 2.1. Characterize graphs G for which rmn(G) = p.

The following theorem gives another family of graphs G with rmn(G) = p.

The sunflower graph SF_n is obtained from a wheel with the central vertex v_0 and the cycle $C_n : v_1v_2 \dots v_nv_1$ and additional vertices $w_1 w_2 \dots w_n$ where w_i is joined by edges to v_i, v_{i+1} where v_{i+1} is taken modulo n.

Theorem 2.1. The radio mean number of the sunflower graph SF_n is its order.

Proof. For n < 5, since diam $(SF_3) = 2$ and diam $(SF_4) = \text{diam}(SF_5) = 3$, the result follows. Assume n > 6. It is clear that diam $(SF_n) = 4$. Define the function f with co domain $\{1, 2, \ldots, 2n+1\}$ as follows: $f(w_1) = 1$, $f(w_2) = n$, $f(w_3) = 2$, $f(w_i) = i - 1$, $4 \le i \le n$, $f(v_0) = n + 1$ and $f(v_i) = n + 1 + i$, $1 \le i \le n$. We must show that the radio mean condition

$$d(u,v) + \left\lceil \frac{f(u) + f(v)}{2} \right\rceil \ge 5$$
(2.1)

for every pair of vertices (u, v) where $u \neq v$. Now, if either $f(u) \ge 6$ or $f(v) \ge 6$, then $\left\lceil \frac{f(u)+f(v)}{2} \right\rceil \ge 4$ and hence (2.1) trivially holds. Hence let $1 \le f(u)$, $f(v) \le 5$. Clearly $u, v \in \{w_1, w_3, w_4, w_5, w_6\}$. If $u = w_i$ and $v = w_j$ and |i - j| > 1, then d(u, v) = 3 or 4 and $\left\lceil \frac{f(u)+f(v)}{2} \right\rceil \ge 2$. Therefore (2.1) holds. If $u = w_i, v = w_{i+1}$, then d(u, v) = 2 and $\left\lceil \frac{f(u)+f(v)}{2} \right\rceil \ge 3$. Hence (2.1) holds.

The Helm H_n is obtained from a wheel W_n by attaching a pendent edge at each vertex of the cycle C_n .

Theorem 2.2. The radio mean number of a Helm H_n is 2n + 1.

Proof. Let $W_n = C_n + K_1$ where C_n is the cycle $u_1 u_2 \dots u_n u_1$ and $V(K_1) = \{u_0\}$. Let w_i be the pendent vertex adjacent to u_i $(1 \le i \le n)$. Since diam $(H_3) = 3$, the result follows. Now let $n \ge 4$. Then diam $(H_n) = 4$. We define f on V as follows: $f(w_i) = i$ for all i with $1 \le i \le n$ and $f(u_i) = n + 1 + i$ for all i with $0 \le i \le n$.

Since diam $(H_n) = 4$, to prove that f is a radio mean labeling, we need to prove that

$$d(u,v) + \left\lceil \frac{f(u) + f(v)}{2} \right\rceil \ge 5$$
(2.2)

for every pair of vertices (u, v) where $u \neq v$.

If either $f(u) \ge 6$ or $f(v) \ge 6$, then $\left\lceil \frac{f(u)+f(v)}{2} \right\rceil \ge 4$ and hence (2.2) trivially holds. Hence let $1 \le f(u)$, $f(v) \le 5$. If $n \ge 5$, it follows that $u, v \in \{w_1, w_2, w_3, w_4, w_5\}$. If $u = w_i, v = w_j$ and |i - j| > 1, then d(u, v) = 4 and (2.2) holds. If $u = w_i$ and $v = w_{i+1}$, then d(u, v) = 3 and $\left\lceil \frac{f(u)+f(v)}{2} \right\rceil \ge 2$. Hence (2.2) holds. Thus f is a radio mean labeling of H_n . If n = 4, then $u, v \in \{w_1, w_2, w_3, w_4, u_0\}$ and since $f(u_0) = 5$, the inequality (2.2) holds. Download English Version:

https://daneshyari.com/en/article/4646545

Download Persian Version:

https://daneshyari.com/article/4646545

Daneshyari.com