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a b s t r a c t

In a mathematics workshop with mn mathematicians from n different areas, each area
consisting of m mathematicians, we want to create a collaboration network. For this
purpose, we would like to schedule daily meetings between groups of size three, so that
(i) two people of the same area meet one person of another area, (ii) each person has
exactly r meeting(s) each day, and (iii) each pair of people of the same area have exactly λ
meeting(s) with each person of another area by the end of theworkshop. Using hypergraph
amalgamation–detachment, we prove a more general theorem. In particular we show that
above meetings can be scheduled if: 3 | rm, 2 | rnm and r | 3λ(n − 1)

(m
2

)
. This result can

be viewed as an analogue of Baranyai’s theorem on factorizations of complete multipartite
hypergraphs.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper,N is the set of positive integers,m, n, r, λ ∈ N, and [n] := {1, . . . , n}. In a mathematics workshop
withmnmathematicians from n different areas, each area consisting ofmmathematicians, wewant to create a collaboration
network. For this purpose, we would like to schedule daily meetings between groups of size three, so that (i) two people
of the same area meet one person of another area, (ii) each person has exactly r meeting(s) each day, and (iii) each pair
of people of the same area have exactly λ meeting(s) with each person of another area by the end of the workshop. Using
hypergraph amalgamation–detachment, we prove a more general theorem. In particular we show that above meetings can
be scheduled if: 3 | rm, 2 | rnm and r | 3λ(n − 1)

(m
2

)
.

A hypergraph G is a pair (V , E) where V is a finite set called the vertex set, E is the edgemultiset, where every edge is itself
a multi-subset of V . This means that not only can an edge occur multiple times in E, but also each vertex can have multiple
occurrences within an edge. The total number of occurrences of a vertex v among all edges of E is called the degree, dG(v) of
v in G. For h ∈ N, G is said to be h-uniform if |e| = h for each e ∈ E. For r, r1, . . . , rk ∈ N, an r-factor in a hypergraph G is a
spanning r-regular sub-hypergraph, and an (r1, . . . , rk)-factorization is a partition of the edge set of G into F1, . . . , Fk where
Fi is an ri-factor for i ∈ [k]. We abbreviate (r, . . . , r)-factorization to r-factorization.

The hypergraph K h
n := (V ,

(
V
h

)
) with |V | = n (by

(
V
h

)
we mean the collection of all h-subsets of V ) is called a complete

h-uniform hypergraph. In connectionwith Kirkman’s schoolgirl problem [14], Sylvester conjectured that K h
n is 1-factorable if

and only if h | n. This conjecture was finally settled by Baranyai [8]. Let K 3
n×m denote the 3-uniform hypergraph with vertex

partition {Vi : i ∈ [n]}, so that Vi = {xij : j ∈ [m]} for i ∈ [n], and with edge set E = {{xij, xij′ , xkl} : i, k ∈ [n], j, j′, l ∈

[m], j ̸= j′, i ̸= k}. Onemay notice that finding an r-factorization forK 3
n×m is equivalent to scheduling themeetings between

mathematicians with the above restrictions for the case λ = 1.
If we replace every edge e of G by λ copies of e, then we denote the new hypergraph by λG. In this paper, the main

result is the following theorem which is obtained by proving a more general result (see Theorem 3.1) using amalgamation–
detachment techniques.
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Theorem 1.1. λK 3
m×n is (r1, . . . , rk)-factorable if

(S1) 3 | rim for i ∈ [k],
(S2) 2 | rimn for i ∈ [k], and
(S3)

∑k
i=1ri = 3λ(n − 1)

(m
2

)
.

In particular, by letting r = r1 = · · · = rk in Theorem 1.1, we solve the Mathematicians Collaboration Problem in the
following case.

Corollary 1.2. λK 3
m×n is r-factorable if

(i) 3 | rm,
(ii) 2 | rnm, and
(iii) r | 3λ(n − 1)

(m
2

)
.

The two results above can be seen as analogues of Baranyai’s theorem for complete 3-uniform ‘‘multipartite’’ hypergraphs.
We note that in fact, Baranyai [9] solved the problemof factorization of complete uniformmultipartite hypergraphs, but here
we aim to solve this problem under a different notion of ‘‘multipartite’’. In Baranyai’s definition, an edge can have at most
one vertex from each part, but here we allow an edge to have two vertices from each part (see the definition of K 3

m×n above).
More precise definitions togetherwith preliminaries are given in Section 2, themain result is proved in Section 3, and related
open problems are discussed in the last section.

Amalgamation–detachment technique was first introduced by Hilton [10] (who found a new proof for decompositions
of complete graphs into Hamiltonian cycles), and was more developed by Hilton and Rodger [11]. Hilton’s method was later
generalized to arbitrary graphs [15,5], and later to hypergraphs [1,2,4,7] leading to various extensions of Baranyai’s theorem
(see for example [1,3]). The results of the present paper,mainly relies on those from [1] and [15]. For the sake of completeness,
here we give a self contained exposition.

2. More terminology and preliminaries

Recall that an edge can have multiple copies of the same vertex. For the purpose of this paper, all hypergraphs (except
when we use the term graph) are 3-uniform, so an edge is always of one of the forms {u, u, u}, {u, u, v}, and {u, v, w} which
we will abbreviate to {u3

}, {u2, v}, and {u, v, w}, respectively. In a hypergraph G, multG(.) denotes the multiplicity; for
example multG(u3) is the multiplicity of an edge of the form {u3

}. Similarly, for a graph G, mult(u, v) is the multiplicity
of the edge {u, v}. A k-edge-coloring of a hypergraph G is a mapping K : E(G) → [k], and the sub-hypergraph of G induced
by color i is denoted by G(i). Whenever it is not ambiguous, we drop the subscripts, and also we abbreviate dG(i)(u) to di(u),
multG(i)(u3) to multi(u3), etc.

Factorizations of the complete graph, Kn, is studied in a very general form in [12,13], however for the purpose of this
paper, a λ-fold version is needed:

Theorem 2.1 (Bahmanian, Rodger [6, Theorem 2.3]). λKn is (r1, . . . , rk)-factorable if and only if rin is even for i ∈ [k] and∑k
i=1ri = λ(n − 1).

Let K ∗
n denote the 3-uniform hypergraph with n vertices in which mult(u2, v) = 1, and mult(u3) = mult(u, v, w) = 0 for

distinct vertices u, v, w. A (3-uniform) hypergraph G = (V , E) is n-partite, if there exists a partition {V1, . . . , Vn} of V such
that for every e ∈ E, |e ∩ Vi| = 1, |e ∩ Vj| = 2 for some i, j ∈ [n] with i ̸= j. For example, both K ∗

n and K 3
m×n are n-partite.

We need another simple but crucial lemma:

Lemma 2.2. If rin is even for i ∈ [k], and
∑k

i=1ri = λ(n − 1), then λK ∗
n is (3r1, . . . , 3rk)-factorable.

Proof. Let G = λKn with vertex set V . By Theorem 2.1, G is (r1, . . . , rk)-factorable. Using this factorization, we obtain a
k-edge-coloring for G such that dG(i)(v) = ri for every v ∈ V and every color i ∈ [k]. Now we form a k-edge-colored
hypergraph H with vertex set V such that multH(i)(u2, v) = multG(i)(u, v) for every pair of distinct vertices u, v ∈ V , and
each color i ∈ [k]. It is easy to see thatH ∼= λK ∗

n and dH(i)(v) = 3ri for every v ∈ V and every color i ∈ [k]. Thus we obtain a
(3r1, . . . , 3rk)-factorization for λK ∗

n . □

If the multiplicity of a vertex α in an edge e is p, we say that α is incident with p distinct hinges, say h1(α, e), . . . , hp(α, e),
and we also say that e is incident with h1(α, e), . . . , hp(α, e). The set of all hinges in G incident with α is denoted by HG(α);
so |HG(α)| is in fact the degree of α.

Intuitively speaking, an α-detachment of a hypergraph G is a hypergraph obtained by splitting a vertex α into one or
more vertices and sharing the incident hinges and edges among the subvertices. That is, in an α-detachment G′ of G in which
we split α into α and β , an edge of the form {αp, u1, . . . , uz} in G will be of the form {αp−i, β i, u1, . . . , uz} in G′ for some
i, 0 ⩽ i ⩽ p. Note that a hypergraph and its detachments have the same hinges. Whenever it is not ambiguous, we use d′,
mult′, etc. for degree, multiplicity and other hypergraph parameters in G′.
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