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a b s t r a c t

In this paper, by using Riordan arrays and a particular model of lattice paths, we are able to
generalize in several ways an identity proposed by Lou Shapiro by giving both an algebraic
and a combinatorial proof. The identities studied in this paper allow us to move from an
arithmetic progression, and other C-finite sequences, to a geometric progression in terms
of Riordan array transformations and vice versa, via the Riordan array inverse.
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1. Introduction

In 1983, Shapiro et al. [21] obtained the following identity⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
2 1 0 0 0 0
5 4 1 0 0 0
14 14 6 1 0 0
42 48 27 8 16 0
132 165 110 44 10 1
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where the entries in the first column of the matrix are the Catalan numbers Cn =
1

n+1

(
2n
n

)
and the entry in row n and

column k is determined by summing the elements in row n − 1 and columns k − 1 and k + 1 plus twice the entry in
column k. The matrix in (1.1) is often called Shapiro’s array due to [19]. A combinatorial proof of the above identity was
given by Woan et al. [24] while computing the area of parallelo-polyominoes via generating functions. Later, Chen et al. [2]
found out a proof by using explicitly the concept of Riordan arrays and they found many other arrays enjoying a similar
property. In particular, they found amatrix identity that extends the sequence (1, 4, 42, 43, . . .) to (1, k, k2, k3 · · · ) by giving
a combinatorial proof in terms of weightedMotzkin paths. A similar generalization is studied from an algebraic point of view
in [1].

We briefly recall that a Riordan array is an infinite lower triangular array (dn,k)n,k∈N, defined by a pair of formal power
series D = (d(t), h(t)), such that d(0) ̸= 0, h(0) = 0, h′(0) ̸= 0 and the generic element dn,k is the nth coefficient in the

* Corresponding author.
E-mail addresses: donatella.merlini@unifi.it (D. Merlini), renzo.sprugnoli@unifi.it (R. Sprugnoli).

http://dx.doi.org/10.1016/j.disc.2016.08.017
0012-365X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.disc.2016.08.017
http://www.sciencedirect.com
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2016.08.017&domain=pdf
mailto:donatella.merlini@unifi.it
mailto:renzo.sprugnoli@unifi.it
http://dx.doi.org/10.1016/j.disc.2016.08.017


D. Merlini, R. Sprugnoli / Discrete Mathematics 340 (2017) 160–174 161

Table 1
A portion of Shapiro’s array S and its inverse S−1 .

series d(t)h(t)k, i.e.:

dn,k = [tn]d(t)h(t)k, n, k ≥ 0.

From this definitionwe have dn,k = 0 for k > n. These arrays constitute a group introduced in 1991 by Shapiro et al. [20]; the
relative literature is vast and constantly growing. Some of their properties and recent applications can be found in [8,10,11].
The product of two Riordan arrays is defined by:

D1 ∗ D2 = (d1(t), h1(t)) ∗ (d2(t), h2(t)) = (d1(t)d2(h1(t)), h2(h1(t))); (1.2)

it corresponds to the usual row-by-columnproduct of two (infinite)matrices. The Riordan array I = (1, t) acts as the identity
and the inverse of D = (d(t), h(t)) is the Riordan array:

D−1
= (d∗

n,k) = (d∗(t), h∗(t)) =

(
1

d(h(t))
, h(t)

)
(1.3)

where h(t) is the compositional inverse of h(t), hence h∗(t) = h(t). An important property of Riordan array concerns the
computation of combinatorial sums. In particular we have the following result (see, e.g., [7,14,22]):

n∑
k=0

dn,kfk = [tn]d(t)f (h(t)) (1.4)

that is, every combinatorial sum involving a Riordan array can be computed by extracting the coefficient of tn from the
generating function d(t)f (h(t)) where f (t) = G(fk) =

∑
k≥0fkt

k is the generating function of the sequence (fk)k∈N and the
symbol G denotes the generating function operator. Due to its importance, relation (1.4) is often called the fundamental rule
of Riordan arrays. Along the paper, the notation (fk)k will be used as an abbreviation of (fk)k∈N.

The matrix in identity (1.1) corresponds to the Riordan array R = (C(t)2, tC(t)2), where C(t) = (1 −
√
1 − 4t)/2t is

the generating function of the Catalan numbers. A slightly different problem posed by Lou Shapiro [18] about twenty years
ago goes as follows: consider the Riordan array S = (C(t), tC(t)2) and the sequence O of odd integers; by the properties of
Riordan arrays, it is not difficult to show that

S ∗ O = (4n)n, or
n∑

k=0

Sn,k(2k + 1) = 4n (1.5)

where ‘‘∗’’ is the usual row-by-column product and the sequences are seen as column vectors, as above. The problem is to
find a combinatorial proof of the identity (1.5). In Table 1 we show the upper part of Shapiro’s triangle S, together with its
inverse S−1. It can be used to verify the main properties of these arrays by direct inspection.

After so many years, it is difficult to reconstruct the whole story and several solution were found. Identity (1.5) was also
given in [16] and in the literature S is often referred as Radoux’s triangle. The problem was recently (in 2011) re-discovered
by Gary W. Adamson, as reported in the On-line Encyclopedia of Integer Sequences (OEIS) [15] as Sequence A039599; this
(double) sequence is nothing but Shapiro’s array, and a great number of its properties are listed there. The inverse array is
also present in the OEIS as Sequence A085478. More recently, Renzo Sprugnoli re-introduced the problem during the first
Symposium on Riordan arrays and related topics (Seoul, South Korea, August 2014).

A firstmotivation towrite this paperwas to emphasize the connection that can exist between themodel and the algebraic
approach to a combinatorial problem. Usually, a solution through amodel is called a combinatorial proof, more appropriate to
the nature of the problem and often considered to inspire new and deeper aspects thereof (see, e.g. Stanley [23]). However,
algebra simplifiesmany proofs and suggests extensions difficult to be imagined at themodel level; just think of passing from
natural numbers (proper of combinatorial objects), to negative integers. The paper starts with an algebraic problem to be
solved combinatorially; the solution suggests a generalization of the original problem, which generates curious analogues
and many combinatorial sums. A still more general model creates other interesting problems, to be attacked algebraically,
and so on in a continuous extensions of problems and results.
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