Contents lists available at [ScienceDirect](http://www.sciencedirect.com)

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

A path Turán problem for infinite graphs

Xing Peng^{[a](#page-0-0)}, Craig Timmons^{[b](#page-0-1)}

^a *Center for Applied Mathematics, Tianjin University, Tianjin 300072, China*

^b *Department of Mathematics and Statistics, California State University, Sacramento, United States*

a r t i c l e i n f o

Article history: Received 12 January 2016 Received in revised form 13 August 2016 Accepted 16 August 2016

Keywords: Path Turán Infinite graphs

a b s t r a c t

Let *G* be an infinite graph whose vertex set is the set of positive integers, and let G_n be the subgraph of *G* induced by the vertices $\{1, 2, \ldots, n\}$. An increasing path of length *k* in *G*, denoted I_k , is a sequence of $k+1$ vertices $1 \leq i_1 < i_2 < \cdots < i_{k+1}$ such that $i_1, i_2, \ldots, i_{k+1}$ is a path in *G*. For $k \geq 2$, let $p(k)$ be the supremum of lim inf $_{n\to\infty} \frac{e(G_n)}{n^2}$ over all I_k -free graphs *G*. In 1962, Czipszer, Erdős, and Hajnal proved that $p(k) = \frac{1}{4}(1 - \frac{1}{k})$ for $k \in \{2, 3\}$. Erdős conjectured that this holds for all $k \geq 4$. This was disproved for certain values of k by Dudek and Rödl who showed that $p(16) > \frac{1}{4}(1 - \frac{1}{16})$ and $p(k) > \frac{1}{4} + \frac{1}{200}$ for all $k \ge 162$. Given that the conjecture of Erdős is true for $k \in \{2, 3\}$ but false for large k, it is natural to ask for the smallest value of *k* for which $p(k) > \frac{1}{4}(1 - \frac{1}{k})$. In particular, the question of whether or not $p(4) = \frac{1}{4}(1 - \frac{1}{4})$ was mentioned by Dudek and Rödl as an open problem. We solve this problem by proving that $p(4) \ge \frac{1}{4}(1-\frac{1}{4}) + \frac{1}{584064}$ and $p(k) > \frac{1}{4}(1-\frac{1}{k})$ for $4 \le k \le 15$. We also show that $p(4) \leq \frac{1}{4}$ which improves upon the previously best known upper bound on *p*(4). Therefore, *p*(4) must lie somewhere between $\frac{3}{16} + \frac{1}{584064}$ and $\frac{1}{4}$.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Turán problems form a cornerstone of extremal graph theory. In general, the Turán problem asks for the maximum number of edges in a graph which does not contain another graph as a subgraph. Turán's Theorem determines this maximum when the forbidden graph is a clique on a fixed number of vertices. Because of its significance, different Turán type problems have been considered in a variety of different settings. One such setting is infinite graphs. Perhaps not surprisingly, Paul Erdős was one of the pioneers of infinite graph theory and we recommend [\[1\]](#page--1-0) and [\[6\]](#page--1-1) for excellent discussions of his work in this area as well as many open problems. In this paper, we study a Turán problem on countably infinite graphs that was first considered by Czipszer, Erdős, and Hajnal [\[2\]](#page--1-2).

Let *G* be an infinite graph with $V(G) = \{1, 2, 3, \ldots\}$. An *increasing path of length k*, denoted by I_k , is a sequence of $k + 1$ vertices i_1,\ldots,i_{k+1} such that $i_1 < i_2 < \cdots < i_{k+1}$ and i_j is adjacent to i_{j+1} for $1 \le j \le k$. An infinite graph G is I_k -free if it does not contain an increasing path of length *k*. For an infinite graph *G*, let *Gⁿ* be the subgraph of *G* induced by the vertices $\{1, 2, \ldots, n\}$ and $p(G) = \liminf_{n \to \infty} \frac{e(G_n)}{n^2}$. Define the *path Turán number of* I_k , denoted $p(k)$, to be the value

 $p(k) = \sup\{p(G) : G \text{ is } I_k\text{-free}\}.$

Czipszer, Erdős, and Hajnal [\[2\]](#page--1-2) introduced these path Turán numbers and proved the following.

<http://dx.doi.org/10.1016/j.disc.2016.08.019> 0012-365X/© 2016 Elsevier B.V. All rights reserved.

E-mail addresses: x2peng@tju.edu.cn (X. Peng), craig.timmons@csus.edu (C. Timmons).

Theorem 1.1 (*Czipszer, Erdős, Hajnal [\[2\]](#page--1-2)*)**.** *The path Turán numbers p*(2) *and p*(3) *satisfy*

$$
p(2) = \frac{1}{8}
$$
 and $p(3) = \frac{1}{6}$.

They also gave a simple construction that shows

$$
p(k) \ge \frac{1}{4} \left(1 - \frac{1}{k} \right) \quad \text{for all } k \ge 2
$$

and asked if $p(k) = \frac{1}{4} \left(1 - \frac{1}{k}\right)$ holds for $k \ge 4$. Erdős conjectured in [\[4\]](#page--1-3) and [\[5\]](#page--1-4) that $p(k) = \frac{1}{4} \left(1 - \frac{1}{k}\right)$ holds for all $k \ge 2$. In 2008, Dudek and Rödl [\[3\]](#page--1-5) disproved the conjecture for certain values of *k* by proving the following result.

Theorem 1.2 (*Dudek, Rödl [\[3\]](#page--1-5)*)**.** *The path Turán number p*(16) *satisfies*

$$
p(16) > \frac{1}{4}\left(1-\frac{1}{16}\right).
$$

Furthermore,

$$
p(k) > \frac{1}{4} + \frac{1}{200}
$$

for all $k \geq 162$ *.*

The results of [\[3\]](#page--1-5) and the conjecture $p(k) = \frac{1}{4} \left(1 - \frac{1}{k}\right)$ is mentioned in a survey paper of Komjáth [\[6\]](#page--1-1) which discusses some of the work of Erdős in infinite graph theory.

[Theorems 1.1](#page-1-0) and [1.2](#page-1-1) suggest the following question: for which values of *k* does one have

$$
p(k) = \frac{1}{4} \left(1 - \frac{1}{k} \right) \tag{1}
$$

and in particular, what is the smallest value of *k* for which [\(1\)](#page-1-2) holds? Our first result is a construction that shows [\(1\)](#page-1-2) does not hold for several small values of k and disproves the conjecture of Erdős in the most difficult case; the case when $k = 4$.

Theorem 1.3. *If* $4 \leq k \leq 15$ *, then*

$$
p(k) > \frac{1}{4}\left(1-\frac{1}{k}\right).
$$

By combining the results of [\[3\]](#page--1-5) with the results and techniques of this paper, one can show that [\(1\)](#page-1-2) fails for all $k > 4$. For more on this, see Section [5.](#page--1-6)

Using the argument of [\[2\]](#page--1-2) we obtained the following upper bound on *p*(4).

Theorem 1.4. *The path Turán number p*(4) *satisfies*

$$
p(4)\leq \frac{1}{4}.
$$

In proving [Theorem 1.3,](#page-1-3) we will find a positive constant c_k for which $p(k)\geq \frac{1}{4}(1-\frac{1}{k})+c_k$ provided $k\in\{4,5,\ldots,$ 15}. In particular, we obtain $c_4 = \frac{1}{584064}$ (see Section [3.3\)](#page--1-7) so that by [Theorem 1.4,](#page-1-4)

$$
\frac{1}{4}\left(1-\frac{1}{4}\right)+\frac{1}{584064} \le p(4) \le \frac{1}{4}.\tag{2}
$$

Determining the exact value of *p*(4) is a challenging open problem. Probably the lower bound in [\(2\)](#page-1-5) is closer to the true value of *p*(4).

The next section introduces a sequence reformulation of the path Turán problem. This reformulation was a key ingredient in the constructions of $[3]$ and we use it in our constructions as well. In Section [3.1](#page--1-8) we give our construction method and state our main lemma. Section [3.2](#page--1-9) contains the proof of our main lemma. In Section [3.3](#page--1-7) we prove [Theorem 1.3](#page-1-3) and in Section [4](#page--1-10) we prove [Theorem 1.4.](#page-1-4)

2. Sequences

It will be convenient to work with the sequence formulation of the problem introduced by Dudek and Rödl. Given an *I*_k-free graph *G* with $V(G) = \mathbb{N}$, partition \mathbb{N} into *k* sets N_1, \ldots, N_k where

$$
N_1(G) = \{ n \in \mathbb{N} : \forall m \in \mathbb{N} \text{ with } \{n, m\} \in E(G) \text{ we have } n < m \}
$$

Download English Version:

<https://daneshyari.com/en/article/4646571>

Download Persian Version:

<https://daneshyari.com/article/4646571>

[Daneshyari.com](https://daneshyari.com)