Two-geodesic transitive graphs of valency six

Wei Jin ${ }^{\text {a,b }}$, Wei Jun Liu ${ }^{\text {c,* }}$, Shang Jin Xu ${ }^{\text {d }}$
${ }^{\text {a }}$ School of Statistics, Jiangxi University of Finance and Economics, Nanchang, Jiangxi, 330013, PR China
${ }^{\mathrm{b}}$ Research Center of Applied Statistics, Jiangxi University of Finance and Economics, Nanchang, Jiangxi, 330013, PR China
c School of Mathematics and Statistics, Central South University, Changsha, Hunan, 410075, PR China
${ }^{\text {d }}$ School of Mathematics and Information Sciences, Guangxi University, Nanning, Guangxi, 530004, PR China

ARTICLE INFO

Article history:

Received 14 February 2015
Received in revised form 18 July 2016
Accepted 3 August 2016

Keywords:

s-geodesic transitive graph
Geodesic transitive graph
Automorphism group

Abstract

For a positive integer s less than or equal to the diameter of a graph Γ, an s-geodesic of Γ is a path $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ such that the distance between v_{0} and v_{s} is s. The graph Γ is said to be s-geodesic transitive, if Γ contains an s-geodesic and its automorphism group is transitive on the set of t-geodesics for all $t \leq s$. In particular, if Γ is s-geodesic transitive with s equal to the diameter of Γ, then Γ is called geodesic transitive. In this paper, we classify the family of finite 2 -geodesic transitive graphs of valency 6 . Then we completely determine such graphs which are geodesic transitive.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, graphs are finite, connected, simple and undirected. In a non-complete graph Γ, a vertex triple (u, v, w) with v adjacent to both u and w is called a 2-arc if $u \neq w$, and a 2-geodesic if in addition u, w are not adjacent. An arc is an ordered pair of adjacent vertices. The graph Γ is said to be 2-arc transitive or 2-geodesic transitive if its automorphism group $\operatorname{Aut}(\Gamma)$ is transitive on arcs, and also transitive on 2-arcs or 2-geodesics, respectively. Clearly, every 2-geodesic is a 2 -arc, but some 2 -arcs may not be 2 -geodesics. If Γ has girth 3 (length of the shortest cycle is 3), then the 2 -arcs contained in 3 -cycles are not 2 -geodesics. The graph in Fig. 1 is the Kneser graph $K G(6,2)$ which is 2-geodesic transitive but not 2-arc transitive with valency 6 . Thus the family of non-complete 2 -arc transitive graphs is properly contained in the family of 2-geodesic transitive graphs.

The first remarkable result about 2-arc transitive graphs comes from Tutte [24,25], and this family of graphs has been studied extensively, see $[1,15,18,19,21,27]$. The local structure of the family of 2-geodesic transitive graphs was determined in [9]. In [7], the authors classified 2-geodesic transitive graphs of valency 4. Later, in [8], they determined the prime valency 2-geodesic transitive graphs. Hence 6 is the next smallest valency for 2-geodesic transitive graphs to investigate. The first aim of this paper is to give a classification of such graphs.

We denote by $K_{n[b]}$ the complete multipartite graph with n parts of size b where $n \geq 3, b \geq 2$, and $K_{3[2]}$ is the octahedron. Let Ω be a set of cardinality n. Then the $\operatorname{Kneser} \operatorname{graph} \operatorname{KG}(n, k)$ is the graph with vertex set all k-subsets of Ω, and two k-subsets are adjacent if and only if they are disjoint. The triangular graph $T(n)$ is the graph with vertex set all 2 -subsets of Ω, and two 2-subsets are adjacent if and only if they share one common element. Thus $K G(n, 2)=T(n)$. (For a graph Γ, its complement $\bar{\Gamma}$ is the graph with vertex set $V(\Gamma)$, and two vertices are adjacent if and only if they are not adjacent in Γ.) The Hamming $\operatorname{graph} \mathrm{H}(d, n)$ has vertex set $\mathbb{Z}_{n}^{d}=\mathbb{Z}_{n} \times \mathbb{Z}_{n} \times \cdots \times \mathbb{Z}_{n}$, where $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ is the ring of integers modulo n, and two

[^0]

Fig. 1. Kneser graph $K G(6,2)$.
vertices are adjacent if and only if they have exactly one different coordinate. For $m, n \geq 2$, we define the ($m \times n$) - grid as the graph having vertex set $\{(i, j) \mid 1 \leq i \leq m, 1 \leq j \leq n\}$, and 2 distinct vertices (i, j) and (r, s) are adjacent if and only if $i=r$ or $j=s$. A subgraph X of Γ is an induced subgraph if two vertices of X are adjacent in X if and only if they are adjacent in Γ. For $U \subseteq V(\Gamma)$, we denote by $[U]$ the subgraph of Γ induced by U.

The diameter $\operatorname{diam}(\Gamma)$ of a graph Γ is the maximum distance between its two vertices. Let u be a vertex of a graph Γ. We denote by $\Gamma_{i}(u)$ the set of vertices of Γ at distance i from u, and we write $\Gamma(u):=\Gamma_{1}(u)$. The sets $\Gamma_{i}(u)$, for $0 \leq i \leq \operatorname{diam}(\Gamma)$, partition the vertices of Γ. In the characterization of 2-geodesic transitive graphs, the following constants are useful. Our definition is inspired by the concept of intersection array defined for the distance transitive graphs, see [4].

Definition 1. Let Γ be a 2-geodesic transitive graph, $u \in V(\Gamma)$, and let $v \in \Gamma_{i}(u), i \leq 2$. Then the number of edges from v to $\Gamma_{i-1}(u), \Gamma_{i}(u)$, and $\Gamma_{i+1}(u)$ is denoted respectively by c_{i}, a_{i} and b_{i}.

The first theorem shows that a 2-geodesic transitive graph of valency 6 with $c_{2} \geq 2$ is known.
Theorem 1.1. Let Γ be a connected 2-geodesic transitive graph of valency 6. Then one of the following holds:
(1) Γ is locally connected and is one of the following three graphs: $T(5), \mathrm{K}_{3[3]}$ or $\mathrm{K}_{4[2]}$.
(2) Γ is locally disconnected of girth 3 , and either $\Gamma \in\{K G(6,2), \mathrm{H}(2,4), \mathrm{H}(3,3)\}$ or $c_{2}=1$.
 in [3], or $c_{2}=1$.

Remark 1.2. Let Γ be a graph in Theorem 1.1(2) such that $c_{2}=1$. Then by [9, Theorem 1.1], the subgraph [$\left.\Gamma(u)\right] \cong 2 \mathrm{~K}_{3}$ or $3 \mathrm{~K}_{2}$. There exists such a Γ. For instance, the generalized hexagon of order $(3,1)$ has valency $6,[\Gamma(u)] \cong 2 \mathrm{~K}_{3}$ and $c_{2}=1$; the halved foster graph has valency $6,[\Gamma(u)] \cong 3 K_{2}$ and $c_{2}=1$. Further, Theorem 1.4 of [9] showed that there is a bijection between such Γ and the \mathcal{S}-point graph of a particular partial linear space \mathcal{S} which has no triangles.

For a positive integer $s \leq \operatorname{diam}(\Gamma)$, an s-geodesic of Γ is a path $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ such that the distance between v_{0} and v_{s} is s. The graph Γ is said to be s-geodesic transitive, if Γ contains an s-geodesic and $\operatorname{Aut}(\Gamma)$ is transitive on the set of t-geodesics for all $t \leq s$. In particular, if Γ is s-geodesic transitive with $s=\operatorname{diam}(\Gamma)$, then Γ is called geodesic transitive. We introduce a weaker symmetry property than geodesic transitivity, namely the distance transitivity. A graph Γ is said to be distance transitive if $\operatorname{Aut}(\Gamma)$ is transitive on the ordered pairs of vertices at any given distance. The study of finite distance transitive graphs goes back to Higman's paper [13] in which "groups of maximal diameter" were introduced. These are permutation groups which act distance transitively on some graph. Then distance transitive graphs have been studied extensively and a classification is almost done, see $[2,11,14,22,23,26,28]$. Note that every geodesic transitive graph is distance transitive.

Our second theorem is to determine all the geodesic transitive graphs of valency 6 .
Theorem 1.3. (1) The Paley graph $P(13)$ and the incidence graph of the $2-(11,6,3)$-design H_{11}^{\prime} are distance transitive but not geodesic transitive.
(2) Let Γ be a connected graph of valency 6 and be not in (1). Then Γ is geodesic transitive if and only if it is distance transitive.

Remark 1.4. (1) All distance transitive graphs of valency 6 are known, see [11, Lemma 1] and [4, p. 222, 223].
(2) Paley graphs are distance transitive. However, $P(9)$ and $P(5)$ are the only two 2-geodesic transitive graphs, see [16, Theorem 1.2].
(3) The bipartite complement of H_{11}^{\prime} is the incidence graph of the 2-(11,5,2)-design. This graph is geodesic transitive of valency 5. (For a bipartite graph Γ with two biparts V_{1}, V_{2}, its bipartite complement is the bipartite graph with vertex set $V(\Gamma)$ and edge set $\left\{\{u, v\} \mid u \in V_{1}, v \in V_{2}, u, v\right.$ are not adjacent in $\left.\Gamma\right\}$.)

https://daneshyari.com/en/article/4646572

Download Persian Version:
https://daneshyari.com/article/4646572

Daneshyari.com

[^0]: Supported by the National Natural Science Foundation of China (Grant No. 11671402, 11661039, 11271208, 11561027 and 2016 M590604) and NSF of Jiangxi (20151BAB201001, GJJ150460).

 * Corresponding author.

 E-mail addresses: jinwei@jxufe.edu.cn (W. Jin), wjliu@csu.edu.cn (W.J. Liu), xusj@gxu.edu.cn (S.J. Xu).

