Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Packing large trees of consecutive orders

Andrzej Żak

AGH University of Science and Technology, Kraków, Poland

ARTICLE INFO

Article history: Received 13 November 2015 Received in revised form 12 July 2016 Accepted 13 July 2016

Keywords: Trees Packing of graphs Tree packing conjecture

ABSTRACT

A conjecture by Bollobás from 1995 (which is a weakening of the famous Tree Packing Conjecture by Gyárfás from 1976) states that any set of k trees $T_n, T_{n-1}, \ldots, T_{n-k+1}$, such that T_{n-i} has n-i vertices, pack into K_n , provided n is sufficiently large. We confirm Bollobás conjecture for trees $T_n, T_{n-1}, \ldots, T_{n-k+1}$, such that T_{n-i} has k - 1 - i leaves or a pending path of order k - 1 - i. As a consequence we obtain that the conjecture is true for $k \le 5$. © 2016 Elsevier B.V. All rights reserved.

1. Introduction

A set of (simple) graphs G_1, G_2, \ldots, G_k are said to pack into a complete graph K_n (in short pack) if G_1, G_2, \ldots, G_k can be found as pairwise edge-disjoint subgraphs in K_n . Many classical problems in Graph Theory can be stated as packing problems. In particular, H is a subgraph of G if and only if H and the complement of G pack.

A famous tree packing conjecture (TPC) posed by Gyárfás [7] states that any set of *n* trees $T_n, T_{n-1}, \ldots, T_1$ such that T_i has *i* vertices pack into K_n . A number of partial results concerning the TPC are known. In particular Gyárfás and Lehel [7] showed that the TPC is true if each tree is either a path or a star. An elegant proof of this result was given by Zaks and Liu [11]. Recently, Joos et al. [9] proved the TPC for all bounded degree trees (earlier, an approximate version of the TPC for all bounded degree trees was proved by Bötcher et al. [4]). In [6] Bollobás suggested the following weakening of TPC:

Conjecture 1. For every $k \ge 1$ there is an $n_0(k)$ such that if $n > n_0(k)$, then any set of k trees $T_n, T_{n-1}, \ldots, T_{n-k+1}$ such that T_{n-j} has n-j vertices pack into K_n .

Bourgeois, Hobbs and Kasiraj [3] showed that any three trees T_n , T_{n-1} , T_{n-2} pack into K_n . Balogh and Palmer [2] proved that any set of $k = \frac{1}{10}n^{1/4}$ trees T_n, \ldots, T_{n-k+1} such that no tree is a star and T_{n-j} has n-j vertices pack into K_n . In this paper we confirm the conjecture for new sets of trees.

We say that a tree *T* has a *pending path* of order *t* if there exists $e \in E(T)$ such that one component of T - e is a path *P* of order *t* and $d_T(v) \le 2$ for every $v \in V(P)$.

Theorem 2. Let k be a positive integer and let $n_0(k)$ be a sufficiently large constant depending only on k. If $n > n_0(k)$, then any set of k trees $T_n, T_{n-1}, \ldots, T_{n-k+1}$, such that T_{n-j} has n - j vertices, and T_{n-j} has k - 1 - j leaves or a pending path of order k - 1 - j, pack into K_n .

Note that every sufficiently large tree has either at least 4 leaves or a long pending path. Thus, Theorem 2 implies Conjecture 1 for $k \le 5$.

E-mail address: zakandrz@agh.edu.pl.

http://dx.doi.org/10.1016/j.disc.2016.07.022 0012-365X/© 2016 Elsevier B.V. All rights reserved.

Corollary 3. Let $k \le 5$ be a positive integer and let $n_0(k)$ be a sufficiently large constant depending only on k. If $n > n_0(k)$, then any set of k trees $T_n, T_{n-1}, \ldots, T_{n-k+1}$, such that T_{n-j} has n - j vertices pack into K_n .

Unfortunately, for $k \ge 6$ there are trees with only four leaves and no pending path of order 5 (actually, no pending path of order 2). For example, such trees arise from a path of order n - 2 by adding one pendant edge to each of the two penultimate vertices of the path). Hence, for $k \ge 6$ Conjecture 1 remains open.

The proofs of preparatory Lemmas 6 and 9 are inspired by Alon and Yuster approach [1], however, many alterations to their method are needed here. These two lemmas are used to first pack one by one most of the trees. The k - 1 - j vertices of a pending path or a star which are guaranteed to exist by assumption give enough freedom to complete the packing (here we use the mentioned earlier result of Gyárfás and Lehel which proves TPC when every tree is a path or a star).

In what follows we fix an integer $k \ge 1$ and assume that $n \ge n_0(k)$, where $n_0(k)$ is a sufficiently large constant depending only on k.

2. Notation

The notation is standard. In particular $d_G(v)$ (abbreviated to d(v) if no confusion arises) denotes the degree of a vertex v in G, $\delta(G)$ and $\Delta(G)$ denote the minimum and the maximum degree of G, respectively. Furthermore, $N_G(v)$ denotes the set of neighbors of v and, for a subset of vertices $W \subseteq V(G)$,

$$N_G(W) = \bigcup_{w \in W} N_G(w) \setminus W$$

and

$$N_G[W] = N_G(W) \cup W$$

Let *G* be a graph and *W* be any set with $|V(G)| \le |W|$. Given an injection $f : V(G) \to W$, let f(G) denote the graph defined as follows

 $f(G) = (W, \{f(u)f(v) : uv \in E(G)\}).$

For two graphs *G* and *H* let $G \oplus H$ denote the graph defined by

 $G \oplus H = (V(G) \cup V(H), E(G) \cup E(H))$

(note that V(G) and V(H) do not need to be disjoint).

A packing of k graphs G_1, \ldots, G_k with $|V(G_j)| \le n, j = 1, \ldots, k$, into a complete graph K_n is a set of k injections $f_j : V(G_j) \to V(K_n), j = 1, \ldots, k$ such that

if
$$i \neq j$$
 then $E(f_i(G_i)) \cap E(f_i(G_i)) = \emptyset$.

For two graphs *G* and *H* with $|V(G)| \leq |V(H)|$, we sometimes use an alternative definition. Namely, we call an injection $f : V(G) \rightarrow V(H)$ a packing of *G* and *H*, if $E(f(G)) \cap E(H) = \emptyset$.

3. Preliminaries

We write Bin(n, p) for the binomial distribution with n trials and success probability p. Let $X \in Bin(n, p)$. We will use the following two versions of the Chernoff bound which follows from formulas (2.5) and (2.6) from [8] by taking $t = 2\mu - np$ and $t = np - \mu/2$, respectively.

If $\mu \ge E[X] = np$ then

$$\Pr[X \ge 2\mu] \le \exp(-\mu/3). \tag{1}$$

On the other hand, if $\mu \leq E[X] = np$ then

$$\Pr[X \le \mu/2] \le \exp(-\mu/8). \tag{2}$$

Proposition 4. Let *G* be a graph with *n* vertices and at most *m* edges. Let $V(G) = \{v_1, \ldots, v_n\}$ with $d(v_1) \ge d(v_2) \ge \cdots \ge d(v_n)$. Then

$$d(v_i) \leq \frac{2m}{i}.$$

Proof. The proposition is true because

$$2m \geq \sum_{j=1}^n d(v_j) \geq \sum_{j=1}^l d(v_j) \geq id(v_i). \quad \Box$$

Download English Version:

https://daneshyari.com/en/article/4646578

Download Persian Version:

https://daneshyari.com/article/4646578

Daneshyari.com