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a b s t r a c t

We consider lattice paths with arbitrary step sizes, called generalized lattice paths, and we
enumerate themwith respect to string types of dpuqdr for any positive integers p, q, and r .
We find that both numbers of types dpudr and dpu2+dr are independent of the number of
i flaws for 1 ≤ i ≤ n−1, i.e., they satisfy the Chung–Feller property, where u is a unit step,
uk is an up step of length k, and u2+

= us1us2 · · ·ust with
t

i=1 si ≥ 2. The enumeration of
generalized lattice paths by peaks and by ascents is also studied.

© 2016 Published by Elsevier B.V.

1. Introduction

Lattice paths have been studied by many mathematicians and produced numerous interesting results (see a wonderful
survey by Humphreys [8]).

Some have been generalizing lattice paths by considering various step sizes. By a generalized n-lattice path we mean a
lattice path from (0, 0) to (2n, 0)with step set {uk

= (k, k), dm
= (m,−m) | k,m ∈ Z+

}. If it does not go below the x-axis,
we call it a generalized n-Dyck path. Sulanke [18] andWoan [20] considered generalized n-Dyck paths among other things. It
was Coker [4] who investigated generalized n-Dyck paths thoroughly. Yeh et al. [6,10] considered generalized lattice paths
in terms of concatenation of vectors and found some interesting properties of them. Rukavicka [16] combinatorially proved
a formula for counting Dyck paths with a finite number of horizontal steps of any size whose sum is the terminal point of
the x-axis. Huq [9] also studied lattice paths with steps (1, 1) and (1,−r) for any positive integer r and found a generalized
Chung–Feller theorem on the paths. Recently, Huh and Park [7] investigated the generalized n-lattice paths and found a
generalized Chung–Feller property for the paths with arbitrary step sizes.

The Chung–Feller theorem was first proved by MacMahon [13] and has been reproved by several mathematicians by
differentmethods (for example, Chung and Feller [3], Narayana [15], and Chen [1]). It states that the number of n-Dyck paths
with unit steps and with k up steps below the x-axis is independent of k. This simple but beautiful theorem seems to be the
one that has given significant impacts on the enumeration of lattice paths. Naturally, it also has been tried to be generalized
aswell, because it is automatically related to any form of generalized lattice paths. It is also called a Chung–Feller property or
a uniform partition property. There have been many interesting results on the property itself and on the generalized forms.
For detailed information see [11,6,9,10,7].
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A closed form for counting the number of elements of a set of generalized lattice paths with certain restrictions can
be obtained by finding a Chung–Feller property on the set, if there exists. The results in this paper use refinements of a
Chung–Feller property.

Enumeration on lattice paths with various combinatorial aspects of strings with unit steps has been studied extensively.
There are toomany papers tomention, sowe just refer to [5,19] for the enumeration of Dyck paths on several types of strings,
and to [12,14] for lattice paths on all string types of length 2 or 3. Especially, for recent and detailed reference see [14].

In this paper, we count generalized n-lattice paths with respect to certain string types, peaks, and ascents by purely
combinatorial ways.

Before we state what we will do in detail, we would like to introduce the following notations first. Please notice that we
differently use the terms of steps and units.

• uk (dk): an up (a down) step of length k ∈ Z+, respectively.
• u (d): an up (a down) unit , respectively. Thus uk is an up step of k up units u. If k = 1, u and d become the unit steps in

the generalized lattice paths. However, if we need to talk about ordinary lattice paths with unit steps, we will use u and
d for up and down steps.

• dpuqdr represents a string of a down step of length p, an up step of length q, and a down step of length r , where p,
q, and r are positive integers. We will consider the cases of dpudr and dpu2+dr , where dpu2+dr is the set of strings
dpus1us2 · · ·ustdr , with p, r ≥ 1 and

t
i=1 si ≥ 2.

• Every up unit below the x-axis in a generalized lattice path is called flaw.
• Dj(n, i) denotes the set of all generalized lattice paths with i flaws and j dpudr ’s.
• D2+

k (n, i) denotes the set of all generalized lattice paths with k dpu2+dr strings with i flaws.
• An ascent is a maximal segment of consecutive up steps.

It seems that the number of generalized lattice paths containing strings of the form dpuqdr for any positive integers p, q,
and r does not give a nice and simple formula. However, if we separate the strings into two cases as dpudr and dpu2+dq, then
we have closed formulas because they are independent of the number of flaws from 1 to n− 1 (the Chung–Feller property).
For the unit steps the number of lattice pathswith j dud’s andwith i flawswas enumerated by theMotzkin numbers as in [19,
14], where they dealt with udu strings which is the same as dud by symmetry. However, the number |Dj(n, i)| involves the
Catalan number, which is a bit surprising. The other number |D2+

k (n, i)| is derived by a combinatorial argument, whose
special case of i = 0, |D2+

k (n, 0)|, gives another combinatorial interpretation for the formula mentioned in [4,2].
Topics of these kindswill be discussed in Section 2. In the last section,we count the number of generalized lattice paths by

peaks and by ascents. Even if the former does not satisfy the Chung–Feller property, we find a closed form by combinatorial
methods. On the other hand, the latter satisfies Chung–Feller property, which gives us a fairly simple formula.

2. Generalized lattice paths containing dpudr and dpu2+dr strings

In this section we will enumerate the sets Dj(n, i) and D2+
k (n, i). We try to find a closed formula for the number |Dj(n, i)|

by counting |Dj(n, 1)| combinatorially, after proving the Chung–Feller property for those paths with 1 ≤ i ≤ n−1 flaws. To
do this we will first construct a bijection between the set Dj(n, i) and the set Dj(n, i + 1) for 1 ≤ i ≤ n − 2, which is based
on a variation of the bijection ψ given for the ordinary unit steps in [14].

We use the following notations for factorization.

• P1 and P2 are generalized lattice paths that do not go below the x-axis, i.e., they are generalized Dyck paths.
• N1 and N2 are generalized lattice paths that do not go above the x-axis.
• Q is a generalized lattice path that starts and ends with d.
• If u is the last up unit starting from the x-axis and d is the first down unit ending at the x-axis after the u, then we call

such d as the matching d for the u. Similarly, if u is the first up unit ending at the x-axis, then the matching d is the first
down unit starting from the x-axis before the u.

• Unless u = u (d = d), the unit up (down) step in the generalized lattice paths, u (d) becomes a part of an up (a down)
step, respectively.

Consider a path P in Dj(n, i) that is factorized as P = P1QN1uP2dN2. Such u and d exist since 1 ≤ i ≤ n− 2. We construct
a bijection ψ from Dj(n, i) to Dj(n, i + 1) that preserves the number of dpudr ’s while increases the number of flaws by one.

A vertex in a generalized lattice path is either an ‘‘endvertex’’ that is an end and a start vertex so that it separates steps,
or a ‘‘midvertex’’ that is in themiddle of a step. We denote (AB) as a vertex between two nonempty paths A and B. The parity
of the vertex (AB) refers to (AB) being an endvertex or a midvertex. Thus the parity of two vertices (AB) and (CD) is the
same, denoted by (AB) ↔ (CD), means that both of them are either endvertices or midvertices. The case of (AB) ↔ (AB)
represents that the parity of the same vertex is preserved, so we will not say any on this natural preservation case.

To define ψ we have two cases to consider:

(1) Case of Q ≠ ∅:
P = P1QN1uP2dN2 ↔ ψ(P) = P1dN1uP2QN2 with
(P1Q ) ↔ (P1d), (QN1) ↔ (dN1), (P2d) ↔ (P2Q ), and (dN2) ↔ (QN2).
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