Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

The asymptotic behavior of the correspondence chromatic number

Anton Bernshteyn

University of Illinois at Urbana-Champaign, United States

ARTICLE INFO

Article history: Received 6 February 2016 Received in revised form 10 May 2016 Accepted 11 May 2016 Available online 7 June 2016

Keywords: Correspondence coloring List coloring Average degree Triangle-free graphs

ABSTRACT

Alon (2000) proved that for any graph G, $\chi_{\ell}(G) = \Omega(\ln d)$, where $\chi_{\ell}(G)$ is the list chromatic number of G and d is the average degree of G. Dvořák and Postle (2015) recently introduced a generalization of list coloring, which they called *correspondence coloring*. We establish an analog of Alon's result for correspondence coloring; namely, we show that $\chi_c(G) = \Omega(d/\ln d)$, where $\chi_c(G)$ denotes the correspondence chromatic number of G. We also prove that for triangle-free G, $\chi_c(G) = O(\Delta/\ln \Delta)$, where Δ is the maximum degree of G (this is a generalization of Johansson's result about list colorings (Johansson, 1996)). This implies that the correspondence chromatic number of a regular triangle-free graph is, up to a constant factor, determined by its degree.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

An important generalization of graph coloring, so-called *list coloring*, was introduced independently by Vizing [11] and Erdős, Rubin, and Taylor [6]. It is defined as follows. Let *G* be a graph¹ and suppose that for each vertex $v \in V(G)$, a set of available colors L(v), called the *list* of v, is specified. A proper coloring *c* of *G* is an *L*-coloring if $c(v) \in L(v)$ for all $v \in V(G)$. *G* is said to be *L*-colorable if it admits an *L*-coloring; *G* is *k*-list-colorable (or *k*-choosable) if it is *L*-colorable whenever $|L(v)| \ge k$ for all $v \in V(G)$. The least number *k* such that *G* is *k*-choosable is called the *list chromatic number* (or the choosability) of *G* and is denoted by $\chi_{\ell}(G)$ (or ch(*G*)).

For all graphs G, $\chi(G) \leq \chi_{\ell}(G)$, where $\chi(G)$ denotes the ordinary chromatic number of G. Indeed, G is k-colorable if and only if it is L-colorable with the list assignment such that $L(v) = \{1, \ldots, k\}$ for all $v \in V(G)$. This inequality can be strict; in fact, $\chi_{\ell}(G)$ cannot be bounded above by any function of $\chi(G)$ since there exist bipartite graphs with arbitrarily high list chromatic numbers.

A striking difference between list coloring and ordinary coloring was observed by Alon in [1]: It turns out that the list chromatic number of a graph can be bounded below by an increasing function of its average degree. More precisely:

Theorem 1.1 (Alon [1]). Let G be a graph with average degree d. Then

 $\chi_{\ell}(G) \ge (1/2 - o(1)) \log_2 d,$

where we assume that $d \rightarrow \infty$.

http://dx.doi.org/10.1016/j.disc.2016.05.012 0012-365X/© 2016 Elsevier B.V. All rights reserved.

E-mail address: bernsht2@illinois.edu.

¹ All graphs considered here are finite, undirected, and simple.

$$\widetilde{L}(v) := \{ (v, c) : c \in L(v) \}.$$

Thus, the sets $\widetilde{L}(v)$ are pairwise disjoint. Let *H* be the graph with vertex set

$$V(H) := \bigcup_{v \in V(G)} \widetilde{L}(v)$$

and edge set

$$E(H) := \{ (v_1, c_1)(v_2, c_2) : v_1v_2 \in E(G), c_1 = c_2 \}.$$

Given an *L*-coloring *c* of *G*, we define the set $I_c \subseteq V(H)$ as follows:

$$I_{c} := \{ (v, c(v)) : v \in V(G) \}.$$

Observe that I_c is an independent set in H and for each vertex $v \in V(G)$, $|I_c \cap \widetilde{L}(v)| = 1$. Conversely, if $I \subseteq V(H)$ is an independent set such that $|I \cap \widetilde{L}(v)| = 1$ for all $v \in V(G)$, then, setting $c_I(v)$ to be the single color such that $(v, c_I(v)) \in I$, we obtain a proper L-coloring c_I of G.

This example can be generalized as follows.

Definition 1.2. Let *G* be a graph. A *cover* of *G* is a pair (*L*, *H*), where *L* is an assignment of pairwise disjoint sets to the vertices of *G* and *H* is a graph with vertex set $\bigcup_{v \in V(G)} L(v)$, satisfying the following two conditions.

1. If $xy \in E(H)$, where $x \in L(u)$, $y \in L(v)$, then $uv \in E(G)$ (in particular, $u \neq v$).

2. For each $uv \in E(G)$, the edges between L(u) and L(v) form a matching.

Definition 1.3. Suppose that *G* is a graph and (L, H) is a cover of *G*. An (L, H)-coloring of *G* is an independent set $I \subseteq V(H)$ such that $I \cap L(v) \neq \emptyset$ for all $v \in V(G)$. In this context, we refer to the vertices of *H* as the colors. *G* is said to be (L, H)-colorable if it admits an (L, H)-coloring.

Remark 1.4. Note that Definition 1.3 allows for more than one color to be used at a given vertex of *G*. However, if *G* is (L, H)-colorable, then we can always find an (L, H)-coloring that uses exactly one color for each vertex.

Definition 1.5. A graph *G* is *k*-correspondence-colorable (*k*-c.c. for short) if it is (*L*, *H*)-colorable whenever (*L*, *H*) is a cover of *G* and $|L(v)| \ge k$ for all $v \in V(G)$. The least number *k* such that *G* is *k*-c.c. is called the *correspondence chromatic number* of *G* and is denoted by $\chi_c(G)$.

The above example shows that $\chi_{\ell}(G) \leq \chi_{c}(G)$ for all graphs *G*. As in the case of ordinary vs. list chromatic number, this inequality can be strict. For instance, if C_{2n} is the cycle of length 2*n*, then $\chi_{\ell}(C_{2n}) = 2$, while $\chi_{c}(C_{2n}) = 3$. Nevertheless, several known upper bounds for list coloring can be transferred to the correspondence coloring setting. For example, it is not hard to show that $\chi_{c}(G) \leq \Delta + 1$ for any graph *G* with maximum degree Δ . Dvořák and Postle observed in [5] that $\chi_{c}(G) \leq 5$ if *G* is planar, and $\chi_{c}(G) \leq 3$ if *G* is planar and has girth at least 5; these bounds are the analogs of Thomassen's results about list colorings [9,10].

Our first result is an analog of Theorem 1.1 for correspondence chromatic number.

Theorem 1.6. Let *G* be a graph with average degree $d \ge 2e$. Then

$$\chi_c(G) \geq \frac{d/2}{\ln(d/2)}.$$

Theorem 1.6 shows that the correspondence chromatic number of a graph grows with the average degree much faster than the list chromatic number and, in fact, is only a logarithmic factor away from the trivial upper bound $\chi_c(G) \le d + 1$ for *d*-regular *G*.

A celebrated theorem of Johansson [7] asserts that for any triangle-free graph *G* with maximum degree Δ , $\chi_{\ell}(G) = O(\Delta/\ln \Delta)$. Our next result shows that the same upper bound holds for correspondence coloring as well.

Theorem 1.7. There exists a positive constant C such that for any triangle-free graph G with maximum degree Δ ,

$$\chi_{c}(G) \leq C \frac{\Delta}{\ln \Delta}.$$

Combining Theorems 1.6 and 1.7, we immediately obtain the following corollary.

Download English Version:

https://daneshyari.com/en/article/4646592

Download Persian Version:

https://daneshyari.com/article/4646592

Daneshyari.com