Note

A note on the values of independence polynomials at -1

Jonathan Cutler ${ }^{\text {a }}$, Nathan Kahl ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Montclair State University, Montclair, NJ, United States
${ }^{\mathrm{b}}$ Department of Mathematics and Computer Science, Seton Hall University, South Orange, NJ, United States

A R TICLE INFO

Article history:

Received 28 October 2014
Received in revised form 17 May 2016
Accepted 18 May 2016
Available online 11 June 2016

Keywords:
Independence polynomial
Decycling number

Abstract

The independence polynomial $I(G ; x)$ of a graph G is $I(G ; x)=\sum_{k=0}^{\alpha(G)} s_{k} x^{k}$, where s_{k} is the number of independent sets in G of size k. The decycling number of a graph G, denoted $\phi(G)$, is the minimum size of a set $S \subseteq V(G)$ such that $G-S$ is acyclic. Engström proved that the independence polynomial satisfies $|I(G ;-1)| \leq 2^{\phi(G)}$ for any graph G, and this bound is best possible. Levit and Mandrescu provided an elementary proof of the bound, and in addition conjectured that for every positive integer k and integer q with $|q| \leq 2^{k}$, there is a connected graph G with $\phi(G)=k$ and $I(G ;-1)=q$. In this note, we prove this conjecture.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let $\alpha(G)$ denote the independence number of a graph G, the maximum order of an independent set of vertices in G. The independence polynomial of a graph G is given by

$$
I(G ; x)=\sum_{k=0}^{\alpha(G)} s_{k} x^{k}
$$

where s_{k} is the number of independent sets of size k in G. The independence polynomial has been the object of much research (see for instance the survey [7]). One direction of this research, partly motivated by connections with hard-particle models in physics [1-3,5,6], has focused on the evaluation of the independence polynomial at $x=-1$.

The decycling number of a graph G, denoted $\phi(G)$, is the minimum size of a set of vertices $S \subseteq V(G)$ such that $G-S$ is acyclic. Engström [3] proved the following bound on $I(G ;-1)$, which is best possible.

Theorem 1.1 (Engström). For any graph $G,|I(G ;-1)| \leq 2^{\phi(G)}$.
Levit and Mandrescu [8] gave an elementary proof of Theorem 1.1 and, in addition, proposed the following conjecture.
Conjecture 1 (Levit and Mandrescu). Given a positive integer k and an integer q with $|q| \leq 2^{k}$, there is a connected graph G with $\phi(G)=k$ and $I(G ;-1)=q$.

For brevity, in this paper a graph G with $\phi(G)=k$ and $I(G ;-1)=q$, with $|q| \leq 2^{k}$, will be referred to as a (k, q)-graph. In [9], Levit and Mandrescu provided constructions that gave (k, q)-graphs for all $k \leq 3$ and $|q| \leq 2^{k}$. Also, they gave constructions for every k provided $q \in\left\{2^{\phi(G)}, 2^{\phi(G)}-1\right\}$. In this paper, we prove Conjecture 1 .

[^0]Table 1
Some small examples

G	$I(G ;-1)$
K_{1}	0
K_{2}	-1
$K_{3}=C_{3}$	-2
C_{6}	2

2. The construction and proof of conjecture

The construction proceeds inductively, using particular ($k-1, q$)-graphs to produce the necessary (k, q)-graphs. First we assemble the tools used in the construction. The most important tool is a recursive formula for $I(G ; x)$ due to Gutman and Harary [4]. We let $N(v)=\{x \in V(G): x v \in E(G)\}$ and $N[v]=\{v\} \cup N(v)$.

Lemma 2.1. For any graph G and any vertex $v \in V(G)$,

$$
I(G ; x)=I(G-v ; x)+x I(G-N[v] ; x) .
$$

Using this, or simply counting independent sets, we can derive the independence polynomial at -1 for small graphs. Some useful examples can be found in Table 1.

Since Lemma 2.1 requires a particular vertex $v \in V(G)$ to be specified, it will often be helpful to root graphs for which we want to compute the independence polynomial at -1 . Given a graph G and a vertex $v \in V(G)$, the rooted graph G_{v} is the graph G with the vertex v labeled. Of course, $I(G ;-1)=I\left(G_{v} ;-1\right)$ for any vertex $v \in V(G)$.

We now introduce two operations on rooted graphs which will be useful in our proof. The first of these is called pasting.
Definition 1. Given two rooted graphs G_{v} and H_{w}, the pasting of G_{v} and H_{w}, denoted $G_{v} \wedge H_{w}$, is the rooted graph formed by identifying the roots v and w.

We note two important facts. First, the pasting operation creates no new cycles, and thus $\phi\left(G_{v} \wedge H_{w}\right) \leq \phi\left(G_{v}\right)+\phi\left(H_{w}\right)$. (In our construction the roots will be pendant vertices, and so $\phi\left(G_{v} \wedge H_{w}\right)=\phi\left(G_{v}\right)+\phi\left(H_{w}\right)$.) Second, if for two rooted graphs G_{v} and H_{w} the quantities $I\left(G_{v} ;-1\right)$ and $I\left(H_{w} ;-1\right)$ have been evaluated using Lemma 2.1, then the value of $I\left(G_{v} \wedge H_{w} ;-1\right)$ can be determined in a straightforward way. It is well-known that, letting $G \cup H$ denote the disjoint union of G and H, we have

$$
I(G \cup H ; x)=I(G ; x) I(H ; x) .
$$

Deleting the pasted vertex in $G_{v} \wedge H_{w}$ produces a disjoint union of graphs. This fact, and the recurrences

$$
\begin{aligned}
& I\left(G_{v} ;-1\right)=I\left(G_{v}-v ;-1\right)-I\left(G_{v}-N[v] ;-1\right) \\
& I\left(H_{w} ;-1\right)=I\left(H_{w}-w ;-1\right)-I\left(H_{w}-N[w] ;-1\right)
\end{aligned}
$$

then give

$$
I\left(G_{v} \wedge H_{w} ;-1\right)=I\left(G_{v}-v ;-1\right) I\left(H_{w}-w ;-1\right)-I\left(G_{v}-N[v] ;-1\right) I\left(H_{w}-N[w] ;-1\right) .
$$

It will be helpful to keep track of the various parts of the above calculation, and in order to do so we introduce the following bookkeeping device. Given a rooted graph G_{v}, where $I\left(G_{v}-v ;-1\right)=a$ and $I\left(G_{v}-N[v] ;-1\right)=b$, and hence $I\left(G_{v} ;-1\right)=a-b$, we write $I\left(G_{v} ;-1\right)=\langle a, b\rangle$ and say that G_{v} has bracket $\langle a, b\rangle$. An example can be found in Fig. 1. Note that for a given rooted graph G_{v} there are unique integers a and b, determined by the root, with $I\left(G_{v} ;-1\right)=\langle a, b\rangle$. Using this notation, the calculations above give the following lemma.

Lemma 2.2 (Pasting Lemma). If G_{v} and H_{w} are rooted graphs on at least two vertices with $I\left(G_{v} ;-1\right)=a-b=\langle a, b\rangle$ and $I\left(H_{w} ;-1\right)=c-d=\langle c, d\rangle$, then

$$
I\left(G_{v} \wedge H_{w} ;-1\right)=a c-b d=\langle a c, b d\rangle .
$$

Our second operation is a variation of the pasting operation which, however, is useful enough to merit its own terminology and notation.

Definition 2. Given a rooted graph G_{v} and an integer $k \geq 0$, the ℓ-extension of G_{v}, denoted G_{v}^{ℓ} is the graph formed by identifying the root v with one of the endpoints of a (disjoint) path of length ℓ and reassigning the root to the other endpoint of the path.

https://daneshyari.com/en/article/4646597

Download Persian Version:

https://daneshyari.com/article/4646597

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: jonathan.cutler@montclair.edu (J. Cutler), nathan.kahl@shu.edu (N. Kahl).

