On a packing problem of Alon and Yuster

A.V. Kostochka ${ }^{\text {a,b }}$, A. McConvey ${ }^{\text {a }}$, D. Yager ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Mathematics, University of Illinois, Urbana, IL 61801, USA
${ }^{\mathrm{b}}$ Sobolev Institute of Mathematics, Novosibirsk, Russia

A R T I C L E IN F O

Article history:

Received 6 October 2015
Received in revised form 16 March 2016
Accepted 19 May 2016
Available online 14 June 2016
Keywords:
Graph packing
Maximum degree
Edge sum

Abstract

Two graphs G_{1} and G_{2}, each on n vertices, pack if there exists a bijection f from $V\left(G_{1}\right)$ onto $V\left(G_{2}\right)$ such that $u v \in E\left(G_{1}\right)$ only if $f(u) f(v) \notin E\left(G_{2}\right)$. In 2014, Alon and Yuster proved that, for sufficiently large n, if $\left|E\left(G_{1}\right)\right|<n-\delta\left(G_{2}\right)$ and $\Delta\left(G_{2}\right) \leq \sqrt{n} / 200$, then G_{1} and G_{2} pack. In this paper, we characterize the pairs of graphs for which the theorem of Alon and Yuster is sharp. We also prove the stronger result that for sufficiently large n, if $\left|E\left(G_{1}\right)\right| \leq n$, $\Delta\left(G_{2}\right) \leq \sqrt{n} / 60$, and $\Delta\left(G_{1}\right)+\delta\left(G_{2}\right) \leq n-1$, then G_{1} and G_{2} pack whenever there is a vertex $v_{1} \in V\left(G_{1}\right)$ such that $d\left(v_{1}\right)=\Delta\left(G_{1}\right)$ and $\alpha\left(G_{1}-N\left[v_{1}\right]\right) \geq \delta\left(G_{2}\right)$.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, the maximum degree and minimum degree of a vertex in a graph G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. The size of a largest independent set in G is denoted by $\alpha(G)$.

Two graphs G_{1} and G_{2} with $\left|V\left(G_{2}\right)\right|=\left|V\left(G_{1}\right)\right|$ pack if there is a bijection $f: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ such that if $u v \in E\left(G_{1}\right)$, then $f(u) f(v) \notin E\left(G_{2}\right)$. In other words, graphs G_{1} and G_{2} pack if G_{1} is a subgraph of the complement of G_{2}. Important results on graph packing were obtained in 1978 by Bollobás and Eldridge [2] and by Sauer and Spencer [6]. In particular, they proved that if two n-vertex graphs together contain at most $\frac{3}{2} n-2$ edges, they are guaranteed to pack.

Theorem 1.1 ([2,6]). Let G_{1} and G_{2} be two n-vertex graphs. If

$$
\begin{equation*}
\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right| \leq \frac{3}{2} n-2 \tag{1}
\end{equation*}
$$

then G_{1} and G_{2} pack.
Restriction (1) cannot be relaxed in view of the pair $\left\{G_{1}, G_{2}\right\}$ where G_{1} is an n-vertex star and G_{2} has no isolated vertices. Furthermore, Bollobás and Eldridge showed that if neither graph contains a star on n vertices, then (1) can be relaxed significantly.

Theorem 1.2 ([2]). Let G_{1} and G_{2} be two n-vertex graphs. If $\Delta\left(G_{1}\right), \Delta\left(G_{2}\right) \leq n-2$ and $\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right| \leq 2 n-3$, then either G_{1} and G_{2} pack, or $\left\{G_{1}, G_{2}\right\}$ is one of the following 7 pairs: $\left\{2 K_{2}, K_{1} \cup K_{3}\right\},\left\{\overline{K_{2}} \cup K_{3}, K_{2} \cup K_{3}\right\},\left\{3 K_{2}, \overline{K_{2}} \cup K_{4}\right\},\left\{\overline{K_{3}} \cup\right.$ $\left.K_{3}, 2 K_{3}\right\},\left\{2 K_{2} \cup K_{3}, \overline{K_{3}} \cup K_{4}\right\},\left\{\overline{K_{4}} \cup K_{4}, K_{2} \cup 2 K_{3}\right\},\left\{\overline{K_{5}} \cup K_{4}, 3 K_{3}\right\}$.

[^0]

Fig. 1. Sharpness examples for Theorem 1.4 [1]

The restriction $2 n-3$ in Theorem 1.2 is again sharp, since the cycle C_{n} does not pack with $K_{1, n-2} \cup K_{1}$ and, together, they have $2 n-2$ edges. In a sense, Theorems 1.1 and 1.2 describe global properties of the graphs, since there are no restrictions on how the edges are arranged in the graph. On the other hand, the following result of Sauer and Spencer shows that two graphs even with many more edges will pack if their maximum degrees are not too large.

Theorem 1.3 ([6]). Let G_{1} and G_{2} be two n-vertex graphs. If $\Delta\left(G_{1}\right) \Delta\left(G_{2}\right)<\frac{n}{2}$, then G_{1} and G_{2} pack.
Recently, Alon and Yuster [1] considered packing a graph with few edges with a graph of bounded maximum degree.
Theorem 1.4 ([1]). For all n sufficiently large, let G_{1} and G_{2} be n-vertex graphs such that $\left|E\left(G_{1}\right)\right| \leq n-\delta\left(G_{2}\right)-1$ and $\Delta\left(G_{2}\right) \leq \sqrt{n} / 200$. Then G_{1} and G_{2} pack.

Alon and Yuster phrased their theorem in the language of Turán numbers. The Turán number ex (n, G) of a graph G is the maximum number of edges in an n-vertex graph that does not contain a subgraph isomorphic to G. A result of Ore [5] from 1961 shows that $\operatorname{ex}\left(n, C_{n}\right)=\binom{n-1}{2}+1$ and that for $n \geq 5$ the only graph with n vertices and $\binom{n-1}{2}+1$ edges that does not contain a C_{n} is K_{n} minus a star with $n-2$ edges [5]. In this language, Theorem 1.4 is the following stronger version of Ore's result.

Theorem 1.5 ([1]). For all n sufficiently large, if G is a graph of order n with no isolated vertices and $\Delta(G) \leq \sqrt{n} / 200$, then $\operatorname{ex}(n, G)=\binom{n-1}{2}+\delta(G)-1$.

Theorem 1.4 has the additional property that, unlike Ore's result, there are different sharpness examples. In particular, the following two examples are provided in [1], though we rephrase them in the language of graph packing. First, let G_{1} be a star with $n-2$ edges and an additional vertex, that is $G_{1}=K_{1, n-2} \cup K_{1}$. Let G_{2} be a graph on n vertices in which all vertices but one have degree 3, the last vertex has degree 2 and the neighbors of this vertex are adjacent. Then G_{1} has $n-\delta\left(G_{2}\right)$ edges, but the two graphs do not pack (Fig. 1(a)). Alternatively, if G_{1} is the disjoint union of a star with $n-3$ vertices and an edge and G_{2} remains unchanged, then G_{1} and G_{2} still do not pack (Fig. 1(b)).

In Fig. $1(\mathrm{a}), \Delta\left(G_{1}\right)+\delta\left(G_{2}\right) \geq n$, so G_{1} and G_{2} cannot pack since there is no suitable vertex in G_{2} to which we might map the vertex of maximum degree in G_{1}. In Fig. 1(b), $\Delta\left(G_{1}\right)+\delta\left(G_{2}\right)=n-1$, so a potential packing could (and must) map the vertex of maximum degree in G_{1} to the vertex of degree 2 in G_{2}. However, such an attempt will eventually fail to be a packing because no set of vertices could be mapped to the neighborhood of the degree 2 vertex.

With this observation, we can obtain a larger set of sharpness examples for Theorem 1.4. For example, fix constants n and d with n much larger than d. Let G_{2} be a d-regular graph on n vertices consisting of a disjoint union of cliques. Let G_{1} be the disjoint union of $d-1$ edges, together with a star containing $n-2(d-1)-1$ edges (Fig. 2(a), here $d=6$). In fact, as long as there is no independent set of size d among the vertices in G_{1} not in the star, we can create still more examples, e.g. Fig. 2(b).

The main result of this paper shows that if there is such an independent set of size $\delta\left(G_{2}\right)$, then G_{1} and G_{2} will pack even if G_{1} contains as many as n edges.

Theorem 1.6. For n sufficiently large $\left(n \geq 10^{9}\right)$, let G_{1} and G_{2} be graphs of order n such that $\Delta\left(G_{2}\right) \leq \sqrt{n} / 60,\left|E\left(G_{1}\right)\right| \leq n$, and $\Delta\left(G_{1}\right)+\delta\left(G_{2}\right) \leq n-1$. If there is a vertex $v_{1} \in V\left(G_{1}\right)$ such that

$$
\begin{equation*}
d\left(v_{1}\right)=\Delta\left(G_{1}\right) \quad \text { and } \quad \alpha\left(G_{1}-N\left[v_{1}\right]\right) \geq \delta\left(G_{2}\right) \tag{2}
\end{equation*}
$$

then G_{1} and G_{2} pack.
Our theorem shows that if we are able to appropriately place the vertex of maximum degree in the sparse graph, then the remainder of the graph can also be placed. In fact, Theorem 1.6 is a generalization of Theorem 1.4. Indeed, if $\left|E\left(G_{1}\right)\right| \leq n-\delta\left(G_{2}\right)-1$, then $\Delta\left(G_{1}\right)+\delta\left(G_{2}\right) \leq n-1$. Also, if $v_{1} \in V\left(G_{1}\right)$ with $d\left(v_{1}\right)=\Delta\left(G_{1}\right)$, then $G-N\left[v_{1}\right]$ contains

https://daneshyari.com/en/article/4646604

Download Persian Version:

https://daneshyari.com/article/4646604

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: kostochk@math.uiuc.edu (A.V. Kostochka), mcconve2@illinois.edu (A. McConvey), yager2@illinois.edu (D. Yager).

