Note

Facial list colourings of plane graphs

Igor Fabrici ${ }^{\text {a }}$, Stanislav Jendrol ${ }^{\mathrm{a}, *}$, Margit Voigt ${ }^{\text {b }}$
${ }^{\text {a }}$ Institute of Mathematics, Faculty of Science, P.J. Šafárik University in Košice, Slovakia
${ }^{\mathrm{b}}$ Faculty of Information Technology and Mathematics, University of Applied Sciences, Dresden, Germany

A R T I C L E IN F O

Article history:

Received 16 December 2015
Received in revised form 26 May 2016
Accepted 26 May 2016
Available online 17 June 2016

Keywords:

List colouring
Facial colouring
Total colouring
Entire colouring
Plane graph

Abstract

Let $G=(V, E, F)$ be a connected plane graph, with vertex set V, edge set E, and face set F. For $X \in\{V, E, F, V \cup E, V \cup F, E \cup F, V \cup E \cup F\}$, two distinct elements of X are facially adjacent in G if they are incident elements, adjacent vertices, adjacent faces, or facially adjacent edges (edges that are consecutive on the boundary walk of a face of G). A list k-colouring is facial with respect to X if there is a list k-colouring of elements of X such that facially adjacent elements of X receive different colours. We prove that every plane graph $G=(V, E, F)$ has a facial list 4-colouring with respect to $X=E$, a facial list 6 -colouring with respect to $X \in\{V \cup E, E \cup F\}$, and a facial list 8-colouring with respect to $X=V \cup E \cup F$. For plane triangulations, each of these results is improved by one and it is tight. These results complete the theorem of Thomassen that every plane graph has a (facial) list 5-colouring with respect to $X \in\{V, F\}$ and the theorem of Wang and Lih that every simple plane graph has a (facial) list 7-colouring with respect to $X=V \cup F$.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are connected and may have loops or multiple edges. We use standard graph theory terminology according to Bondy and Murty [2]. We recall some important notions.

A plane graph is a particular drawing of a planar graph on the Euclidean plane. Suppose that $G=(V, E, F)$ is a connected plane graph with vertex set V, edge set E, and face set F. Faces of G are open 2-cells. The boundary of a face α is the boundary in the usual topological sense. It is a collection of all edges and vertices contained in the closure of the face α. Two vertices (two edges or two faces) are adjacent if they are joined by an edge (have a common end vertex or their boundaries have a common edge). A vertex and an edge are incident if the vertex is an end vertex of the edge. A vertex (an edge) and a face are incident if the vertex (the edge) lies on the boundary of the face.

A closed walk $W=v_{0}, e_{0}, v_{1}, e_{1}, \ldots, e_{k-1}, v_{k}$ in G is a boundary walk corresponding to a face α if all vertices and edges of W are incident with α, and for all $i \in\{1, \ldots, k\}, e_{i}$ follows e_{i-1} (indices modulo k) in the clockwise order of edges around v_{i}. In a connected plane graph, for every face α there exists a boundary walk containing all vertices and edges incident with α. This boundary walk is unique up to the choice of v_{0} and e_{0}.

Two distinct edges are facially adjacent in G if they are consecutive edges on a boundary walk of a face of G.
A proper k-entire-colouring of a plane graph G is a mapping $\varphi: V \cup E \cup F \rightarrow\{1, \ldots, k\}$ such that any two distinct adjacent or incident elements in the set $V \cup E \cup F$ receive distinct colours. The proper entire chromatic number $\chi_{v e f}(G)$ of a plane graph G is the smallest integer k such that G has a proper k-entire-colouring.

[^0]Two distinct elements x and y of a graph are facially adjacent if they are incident elements, adjacent vertices, adjacent faces, or facially adjacent edges. A facial k-entire-colouring of a plane graph G is a mapping $\varphi: V \cup E \cup F \rightarrow\{1, \ldots, k\}$ such that any two facially adjacent elements receive distinct colours. The facial entire chromatic number $\bar{\chi}_{v e f}(G)$ of a plane graph is the smallest integer k such that G has a facial k-entire-colouring.

A mapping L is an assignment for the plane graph G if it assigns a list $L(x)$ of possible colours to each element x of $V \cup E \cup F$. If G has a proper (facial) entire colouring φ such that $\varphi(x) \in L(x)$ for all elements x, then we say that G is properly (facially) L-entire-colourable and φ is a proper (facial) L-entire-colouring of G. We say that G is properly (facially) k-entire-choosable if it is properly (facially) L-entire-colourable for any assignment L satisfying $|L(x)|=k$ for each element x of $V \cup E \cup F$. The proper (facial) entire choice number $c h_{v e f}(G)\left(\overline{c h}_{v e f}(G)\right)$ is the smallest k such that G is properly (facially) k-entire-choosable.

If we colour $V, E, F, V \cup E, E \cup F$, and $V \cup F$ (instead of $V \cup E \cup F$), then the corresponding colourings are called vertex colouring, edge colouring, face colouring, total colouring, edge-face colouring, and coupled colouring, of G, respectively. Facial and list versions for these colourings can be defined similarly.

All these (not necessarily facial) colourings of plane graphs have been studied extensively. For details concerning proper colourings see a recent survey by Borodin [11] and for facial colourings see a recent paper [14]. There are many deep results and also many challenging open problems.

This paper is devoted to study facial list colourings of plane graphs. There is a rich literature concerning proper list colourings of elements of plane graphs. Thomassen [20] proved that if G is planar, then $c h(G)=\overline{c h}_{v}(G) \leq 5$, in other words, every planar graph is properly 5 -vertex-choosable, whereas Voigt [22] presented an example of a non-4-vertex-choosable planar graph. Borodin proved in [6] that any plane graph G of maximum degree Δ is properly $(\Delta+1)$-edge-choosable for $\Delta \geq 9$ and properly Δ-edge-choosable for $\Delta \geq 14$. The bound 14 was then lowered to 12 by Borodin, Kostochka, and Woodall [12]. Several recent results for $\operatorname{ch}_{e}(G) \leq \Delta+1$ if $5 \leq \Delta \leq 8$ have been published for sparse graphs (often defined in terms of girth or collections of forbidden cycles), see [11,12,15,16,19,26,27].

Borodin proved in $[4,5]$ that $c h_{v e}(G) \leq \Delta+2$ for $\Delta \geq 11$ and $\Delta \geq 9$, respectively, and improved the bound $\Delta+2$ to $\Delta+1$ if $\Delta \geq 16$. Borodin, Kostochka, and Woodall [12] proved that every plane graph is properly ($\Delta+1$)-total-choosable if $\Delta \geq 12$.

The following conjecture of Woodall from 2009 (see [11]) is still open:
Conjecture 1. If G is a simple plane graph with $\Delta(G) \geq 4$, then

$$
c h_{v e}(G)=\Delta+1 .
$$

Wang and Lih [25] proved that any simple connected plane graph is properly 7-coupled-choosable and found out that there is a plane graph G with $\chi_{v f}(G)<c h_{v f}(G)$. Note that, by Borodin [3,9], $\chi_{v f}(G) \leq 6$ for every plane graph G.

Borodin [8] proved that any simple plane graph G with $\Delta(G)=\Delta \geq 10$ is properly ($\Delta+1$)-edge-face-choosable. Wang and Lih [24] have proved that $c h_{e f}(G) \leq \Delta+3$ and constructed a plane graph H such that $\chi_{e f}(G)<c h_{e f}(G)$.

The list entire colouring was studied first by Borodin [10,7] who proved that any connected loopless and bridgeless plane graph G of maximum degree Δ is properly ($\Delta+4$)-entire-choosable if $\Delta \geq 7$ and it is properly $(\Delta+2)$-entire-choosable if $\Delta \geq 12$. The bound 12 is sharp. For $\Delta=3$ the bound $c h_{v e f}(G) \leq \Delta+4$ is tight.

In [14] it is proved that for any connected loopless and bridgeless plane graph G the following holds

$$
\bar{\chi}_{e}(G) \leq 4, \bar{\chi}_{v e}(G) \leq 6, \bar{\chi}_{e f}(G) \leq 6, \quad \text { and } \quad \bar{\chi}_{v e f}(G) \leq 8 .
$$

In this note we strengthen these results. Namely, we prove that any connected loopless and bridgeless plane graph is facially 4 -edge-choosable, facially 6 -total-choosable, and facially 8 -entire-choosable. We also show that every plane triangulation is facially 3-edge-choosable, facially 5-total-choosable, and facially 7-entire-choosable, which are best possible.

The rest of the paper is organized as follows: In Section 2 we give some necessary notions and notation. Section 3 is devoted to facial list edge colourings. In Section 4 we study facial list total colourings of several families of plane graphs. Facial list entire colourings of plane graphs are investigated in Section 5.

2. Preliminaries

Given a plane graph $G=(V, E, F)$, one can define the dual $G^{*}=\left(V^{*}, E^{*}, F^{*}\right)$ of G as follows (see [2]): Corresponding to each face α of G there is a vertex α^{*} of G^{*}, and corresponding to each edge e of G there is an edge e^{*} of G^{*}. Two vertices α^{*} and β^{*} are joined by the edge e^{*} in G^{*} if and only if their corresponding faces α and β share the edge e in G. In the dual G^{*} of a plane graph G, the edges corresponding to those that lie on the boundary of a face α of G are just the edges incident with the corresponding vertex α^{*}. It is easy to see that the dual G^{*} of a plane graph G is itself a planar graph; in fact, there is a natural embedding of G^{*} on the plane. We place each vertex α^{*} in the corresponding face α of G, and then draw each edge e^{*} in such a way that it crosses the corresponding edge e of G exactly once (and crosses no other edge of G).

A graph is k-degenerate if it can be reduced to a single vertex by repeatedly deleting vertices of degree at most k (see [2]). It is easy to see that every k-degenerate graph G has the chromatic number $\chi(G) \leq k+1$ and the choice number $c h(G)$ with $\chi(G) \leq \operatorname{ch}(G) \leq k+1$.

https://daneshyari.com/en/article/4646609

Download Persian Version:

https://daneshyari.com/article/4646609

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: igor.fabrici@upjs.sk (I. Fabrici), stanislav.jendrol@upjs.sk (S. Jendrol'), mvoigt@informatik.htw-dresden.de (M. Voigt).

