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a b s t r a c t

We study the classes of (u,m, e, s)-nets and (u, e, s)-sequences, which are generalizations
of (u,m, s)-nets and (u, s)-sequences, respectively. We show equivalence results that link
the existence of (u,m, e, s)-nets and so-called mixed (ordered) orthogonal arrays, thereby
generalizing earlier results by Lawrence, and Mullen and Schmid. We use this combinato-
rial equivalence principle to obtain new results on the possible parameter configurations
of (u,m, e, s)-nets and (u, e, s)-sequences, which generalize in particular a result ofMartin
and Stinson.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction and basic definitions

The construction of point sets and sequences with good equidistribution properties is a classical problem in number
theory and has important applications to quasi-Monte Carlo methods in numerical analysis (see the books of Dick and Pil-
lichshammer [1], Leobacher and Pillichshammer [8], and Niederreiter [13]). The standard setting is that of the s-dimensional
unit cube [0, 1]s, for a given dimension s ≥ 1, from which the points are taken. While the problem of constructing evenly
distributed points in [0, 1]s is of number-theoretic origin, it also has a strong combinatorial flavor (see [1, Chapter 6] and
[7, Chapter 15]).

Powerfulmethods for the construction of finite point setswith good equidistribution properties in [0, 1]s are based on the
theory of nets (see again the references above as well as the original paper [12] and the recent handbook article [14]). This
theorywas recently extended by Tezuka [20] and studied in a slightlymodified form byHofer [3], Hofer and Niederreiter [4],
Kritzer and Niederreiter [5], and Niederreiter and Yeo [17]. The underlying idea of these nets is to guarantee perfect
equidistribution of the points for certain subintervals of the half-open unit cube [0, 1)s. Concretely, for a dimension s ≥ 1
and an integer b ≥ 2, an interval J ⊆ [0, 1)s is called an elementary interval in base b if it is of the form

J =

s
i=1

[aib−di , (ai + 1)b−di) (1)

with integers di ≥ 0 and 0 ≤ ai < bdi for 1 ≤ i ≤ s. These intervals play a crucial role in the subsequent definition of a
(u,m, e, s)-net, which we state below. Here and in the following, we denote by N the set of positive integers and by λs the
s-dimensional Lebesgue measure.
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Definition 1. Let b ≥ 2, s ≥ 1, and 0 ≤ u ≤ m be integers and let e = (e1, . . . , es) ∈ Ns. A point setP of bm points in [0, 1)s
is a (u,m, e, s)-net in base b if every elementary interval J ⊆ [0, 1)s in base b of volume λs(J) ≥ bu−m and of the form (1),
with integers di ≥ 0, 0 ≤ ai < bdi , and ei|di for 1 ≤ i ≤ s, contains exactly bmλs(J) points of P .

Definition 1 is the definition of a (u,m, e, s)-net in base b in the sense of [4]. Previously, Tezuka [20] introduced a slightly
more general definition where the conditions on the number of points in the elementary intervals need to hold only for
those elementary intervals J in base bwith λs(J) = bu−m. The narrower definition in [4] guarantees, as stated in that paper,
that every (u,m, e, s)-net in base b is also a (v,m, e, s)-net in base b for every integer v with u ≤ v ≤ m. The latter
property is very useful when working with such point sets (see again [4] for further details). Hence, whenever we speak of
a (u,m, e, s)-net here, we mean a (u,m, e, s)-net in the narrower sense of Definition 1.

Note that the points of a (u,m, e, s)-net tend to be very evenly distributed if u is small. But the choice of e1, . . . , es ∈ N
also plays an important role since larger values of the ei in general entail fewer restrictions in the defining property of
the net.

For infinite sequences of points in [0, 1]s with good equidistribution properties, the corresponding concept is that of a
(u, e, s)-sequence. As usual, we write [x]b,m for the coordinatewise m-digit truncation in base b of x ∈ [0, 1]s (compare
with [14, Remark 14.8.45] and [15, p. 194]).

Definition 2. Let b ≥ 2, s ≥ 1, and u ≥ 0 be integers and let e ∈ Ns. A sequence x1, x2, . . . of points in [0, 1]s is a
(u, e, s)-sequence in base b if for all integers g ≥ 0 and m > u, the points [xn]b,m with gbm < n ≤ (g + 1)bm form a
(u,m, e, s)-net in base b.

Again, the points of a (u, e, s)-sequence are very evenly distributed if u is small, but also in this case the choice of e has
an influence on the manner in which the points are spread over the elementary intervals in the unit cube.

If we choose e = (1, . . . , 1) ∈ Ns in Definitions 1 and 2, then these definitions coincide with those of a
classical (u,m, s)-net and a classical (u, s)-sequence, respectively. The reasons why the more general (u,m, e, s)-nets and
(u, e, s)-sequences were introduced have to do with their applications to quasi-Monte Carlo methods. Since this paper is
devoted to the combinatorial aspects of (u,m, e, s)-nets and (u, e, s)-sequences, we do not elaborate on these reasons and
we refer instead to [5, Section 1] and [20].

It was shown by Lawrence [6] and Mullen and Schmid [11] that classical (u,m, s)-nets are combinatorially equivalent to
certain types of orthogonal arrays (see also [1, Section 6.2] for an exposition of this result). This equivalence has important
implications for the theory of (u,m, s)-nets and (u, s)-sequences (see [1, Chapter 6] and [18]). The main result of the
present paper generalizes this equivalence to (u,m, e, s)-nets (see Theorem 5). The crucial step is to move from orthogonal
arrays to mixed orthogonal arrays in the sense of [2, Chapter 9]. We recall the definition of a mixed orthogonal array
OA


N, lk11 · · · lkvv , t


from [2, Definition 9.1], where we change the notation from si to li since in our case s stands for a

dimension. We write R(b) = {0, 1, . . . , b − 1} ⊂ Z for every integer b ≥ 2.

Definition 3. LetN ≥ 1, l1, . . . , lv ≥ 2, k1, . . . , kv ≥ 1, and 0 ≤ t ≤ k := k1+· · ·+kv be integers. Amixed orthogonal array
OA


N, lk11 · · · lkvv , t


is an array of sizeN×k in which the first k1 columns have symbols from R(l1), the next k2 columns have

symbols from R(l2), and so on, with the property that in any N × t subarray every possible t-tuple occurs an equal number
of times as a row.

Remark 1. The parameter t of a mixed orthogonal array is called its strength. Definition 3 is vacuously satisfied for t = 0.
As in [2, Definition 9.1], it is not required that l1, . . . , lv be distinct. If l1 = · · · = lv , then Definition 3 reduces to that of an
orthogonal array (see [2, Definition 1.1]).

Further results of this paper concern bounds on the parameters of (u,m, e, s)-nets and (u, e, s)-sequences for the case of
greatest practical interest where u = 0 (see Theorems 1–4). Moreover, we show a necessary condition for the parameters
of a mixed ordered orthogonal array (see Theorem 6) which generalizes [10, Lemma 3.1].

2. Necessary conditions for (0,m, e, s)-nets

The parameter u of a (u,m, e, s)-net is a nonnegative integer and its optimal value is u = 0. The following result imposes
a combinatorial obstruction on the existence of (0,m, e, s)-nets. If e = (e1, . . . , es) ∈ Ns, then we can assume without loss
of generality that e1 ≤ e2 ≤ · · · ≤ es.

Theorem 1. Let e = (e1, . . . , es) ∈ Ns with e1 ≤ e2 ≤ · · · ≤ es. For 2 ≤ t ≤ s and m ≥ es−t+1 + · · ·+ es−1 + es, the existence
of a (0,m, e, s)-net in base b implies the existence of a mixed orthogonal array OA


bm, l11 · · · l1s , t


with li = bei for 1 ≤ i ≤ s.

Proof. Let P be a (0,m, e, s)-net in base b and let the points of P be

xn = (x(1)
n , . . . , x(s)

n ) ∈ [0, 1)s for n = 1, . . . , bm.
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