Conjectured bounds for the sum of squares of positive eigenvalues of a graph

Clive Elphick, Miriam Farber ${ }^{\text {a,* }}$, Felix Goldberg ${ }^{\text {b }}$, Pawel Wocjan ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, Massachusetts Institute of Technology, Cambridge MA, USA
${ }^{\text {b }}$ Caesarea-Rothschild Institute, University of Haifa, Haifa, Israel
${ }^{\text {c }}$ Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, USA

ARTICLE INFO

Article history:

Received 17 March 2015
Received in revised form 25 January 2016
Accepted 27 January 2016
Available online 6 May 2016

Keywords:

05 C 50
Adjacency matrix
Inertia of a graph
Hyper-energetic graphs

Abstract

A well known upper bound for the spectral radius of a graph, due to Hong, is that $\mu_{1}^{2} \leq$ $2 m-n+1$ if $\delta \geq 1$. It is conjectured that for connected graphs $n-1 \leq s^{+} \leq 2 m-n+1$, where s^{+}denotes the sum of the squares of the positive eigenvalues. The conjecture is proved for various classes of graphs, including bipartite, regular, complete q-partite, hyperenergetic, and barbell graphs. Various searches have found no counter-examples. The paper concludes with a brief discussion of the apparent difficulties of proving the conjecture in general.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a simple and undirected graph with n vertices, m edges, chromatic number χ, minimum degree δ, maximum degree Δ and adjacency matrix A with eigenvalues $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}$. The inertia of A is the ordered triple (ω, v, γ), where ω, v and γ are the numbers (counting multiplicities) of positive, negative and zero eigenvalues of A respectively. Let

$$
s^{+}=\sum_{i=1}^{\omega} \mu_{i}^{2} \quad \text { and } \quad s^{-}=\sum_{i=n-v+1}^{n} \mu_{i}^{2}
$$

Note that $\sum_{i=1}^{n} \mu_{i}^{2}=s^{+}+s^{-}=\operatorname{tr}\left(A^{2}\right)=2 m$ and $2 m \geq 2(n-1)$ for connected graphs. Also let graph energy $E=\sum_{i=1}^{n}\left|\mu_{i}\right|$. Since $\operatorname{tr}(A)=0$,

$$
\sum_{i=1}^{\omega} \mu_{i}=-\sum_{i=n-v+1}^{n} \mu_{i}=E / 2
$$

Wocjan and Elphick [16] proved that $\chi \geq s^{+} / s^{-}$and conjectured that $\chi \geq 1+s^{+} / s^{-}$. This Conjecture was recently proven by Ando and Lin in [1]. It provides an example of replacing μ_{1}^{2} with s^{+}, because Edwards and Elphick [6] proved that $\chi \geq 2 m /\left(2 m-\mu_{1}^{2}\right)$.

[^0]http://dx.doi.org/10.1016/j.disc.2016.01.021
0012-365X/© 2016 Elsevier B.V. All rights reserved.

In 1988 Hong [7] proved that for connected graphs:

$$
\mu_{1}^{2} \leq 2 m-n+1
$$

with equality only for K_{n} and Star graphs. Note that for K_{n} and Star graphs, $s^{+}=\mu_{1}^{2}$. Hong [8] also noted that this bound holds for graphs with no isolated vertices.

This bound has been strengthened by several authors. For example, Nikiforov [11] proved that:

$$
\mu_{1} \leq \frac{\delta-1}{2}+\sqrt{2 m-n \delta+\frac{(1+\delta)^{2}}{4}}
$$

which is exact for various families of graphs, including regular graphs. It strengthens Hong's bound, as discussed in [11].

2. Conjecture

Conjecture 1. Let G be a connected graph. Then

$$
\min \left(s^{-}, s^{+}\right) \geq n-1
$$

Note that $s^{-} \geq n-1$ implies that $s^{+} \leq 2 m-n+1$ and vice versa.
Conjecture 2. Let G be a graph with κ connected components. Then

$$
\min \left(s^{-}, s^{+}\right) \geq n-\kappa
$$

Proof. Let $G_{1}, \ldots, G_{\kappa}$ denote the components of G and let n_{i} denote the number of vertices in G_{i}. Then

$$
s^{-}(G)=\sum s^{-}\left(G_{i}\right) \geq \sum\left(n_{i}-1\right)=n-\kappa
$$

and similarly for $s^{+}(G)$.

2.1. Comments

A graph is connected if and only if its adjacency matrix is irreducible. In the language of matrix algebra, this conjecture can therefore be expressed as $\min \left(s^{-}, s^{+}\right) \geq n-1$ for binary, symmetric, irreducible matrices with zero trace.

Note that if L is the Laplacian of G, then $n-\kappa=\operatorname{rank}(G)=\operatorname{rank}(L)=$ number of positive eigenvalues of L.
We have searched the 10,000 s of connected named graphs with 6 to 40 vertices in Wolfram Mathematica, and all connected graphs with up to 8 vertices, and found no counter-examples. A reviewer of this paper has also kindly checked all connected graphs with 9 and 10 vertices, and connected graphs with maximum degree four on 11 and 12 vertices and found no counter-example.

Note that for connected graphs, if $s^{+}>s^{-}$then $s^{+}>m \geq n-1$, and if $s^{-}>s^{+}$then $s^{-}>m \geq n-1$. Most, but not all graphs, have $s^{+} \geq s^{-}$. So for any connected graph one half of the conjecture is true.

If we consider the set of connected graphs on n vertices, then it is notable that $s^{-}=n-1$ for the graphs with the minimum number of edges (Trees) and the maximum number of edges $\left(K_{n}\right)$.
Theorem 3. Let G be any graph. Then $s^{-}(G) \leq n^{2} / 4$.
Proof. We use that $\mu_{1} \geq 2 m / n$ and assume that $s^{-}>n^{2} / 4$, in which case:

$$
2 m=s^{+}+s^{-} \geq \mu_{1}^{2}+s^{-} \geq \frac{4 m^{2}}{n^{2}}+s^{-}>\frac{4 m^{2}}{n^{2}}+\frac{n^{2}}{4}
$$

This rearranges to:

$$
0>\left(\frac{2 m}{n}-\frac{n}{2}\right)^{2}
$$

which is a contradiction.
Note that $s^{-}=\mu_{n}^{2}=n^{2} / 4$ for regular complete bipartite graphs. This bound can be compared with the following bound due to Constantine [4]:

$$
\mu_{n}^{2} \leq\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil \leq \frac{n^{2}}{4}
$$

2.2. An alternative formulation

The cyclomatic number, $c(G)$, is the minimum number of edges that need to be removed from a graph to make it acyclic. It is well known that $c=m-n+\kappa$, where κ is the number of components of a graph. We can therefore reformulate

https://daneshyari.com/en/article/4646615

Download Persian Version:

https://daneshyari.com/article/4646615

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: clive.elphick@gmail.com (C. Elphick), mfarber@mit.edu (M. Farber), felix.goldberg@gmail.com (F. Goldberg), wocjan@eecs.ucf.edu (P. Wocjan).

