Interval edge-colorings of complete graphs

H.H. Khachatrian ${ }^{\text {a,* }}$, P.A. Petrosyan ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Department of Informatics and Applied Mathematics, Yerevan State University, Yerevan, 0025, Armenia
${ }^{\mathrm{b}}$ Institute for Informatics and Automation Problems, National Academy of Sciences, Yerevan, 0014, Armenia

A R TICLE INFO

Article history:

Received 20 November 2014
Received in revised form 1 April 2016
Accepted 2 April 2016
Available online 6 May 2016

Keywords:

Edge-coloring
Interval edge-coloring
Complete graph
1-factorization

Abstract

An edge-coloring of a graph G with colors $1,2, \ldots, t$ is an interval t-coloring if all colors are used, and the colors of edges incident to each vertex of G are distinct and form an interval of integers. A graph G is interval colorable if it has an interval t-coloring for some positive integer t. For an interval colorable graph $G, W(G)$ denotes the greatest value of t for which G has an interval t-coloring. It is known that the complete graph is interval colorable if and only if the number of its vertices is even. However, the exact value of $W\left(K_{2 n}\right)$ is known only for $n \leq 4$. The second author showed that if $n=p 2^{q}$, where p is odd and q is nonnegative, then $W\left(K_{2 n}\right) \geq 4 n-2-p-q$. Later, he conjectured that if $n \in \mathbb{N}$, then $W\left(K_{2 n}\right)=4 n-2-\left\lfloor\log _{2} n\right\rfloor-\left\|n_{2}\right\|$, where $\left\|n_{2}\right\|$ is the number of 1 's in the binary representation of n.

In this paper we introduce a new technique to construct interval colorings of complete graphs based on their 1-factorizations, which is used to disprove the conjecture, improve lower and upper bounds on $W\left(K_{2 n}\right)$ and determine its exact values for $n \leq 12$.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

All graphs in this paper are finite, undirected, have no loops or multiple edges. Let $V(G)$ and $E(G)$ denote the sets of vertices and edges of a graph G, respectively. For $S \subseteq V(G), G[S]$ denotes the subgraph of G induced by S, that is, $V(G[S])=S$ and $E(G[S])$ consists of those edges of $E(G)$ for which both ends are in S. For a graph $G, \Delta(G)$ denotes the maximum degree of vertices in G. A graph G is r-regular if all its vertices have degree r. The set of edges M is called a matching if no two edges from M are adjacent. A vertex v is covered by the matching M if it is incident to one of the edges of M. A matching M is a perfect matching if it covers all the vertices of the graph G. The set of perfect matchings $\mathfrak{F}=\left\{F_{1}, F_{2}, \ldots, F_{n}\right\}$ is a 1-factorization of G if every edge of G belongs to exactly one of the perfect matchings in \mathfrak{F}. The set of integers $\{a, a+1, \ldots, b\}, a \leq b$, is denoted by [a, b]. The terms, notations and concepts that we do not define can be found in [14].

A proper edge-coloring of graph G is a coloring of the edges of G such that no two adjacent edges receive the same color. The chromatic index $\chi^{\prime}(G)$ of a graph G is the minimum number of colors used in a proper edge-coloring of G. If α is a proper edge-coloring of G and $v \in V(G)$, then the spectrum of a vertex v, denoted by $S(v, \alpha)$, is the set of colors of edges incident to v. By $\underline{S}(v, \alpha)$ and $\bar{S}(v, \alpha)$ we denote the smallest and largest colors of the spectrum, respectively. If α is a proper edge-coloring

[^0]of G and H is a subgraph of G, then we can define a union and intersection of spectrums of the vertices of H :
\[

$$
\begin{aligned}
& S_{\cap}(H, \alpha)=\bigcap_{v \in V(H)} S(v, \alpha) \\
& S_{\cup}(H, \alpha)=\bigcup_{v \in V(H)} S(v, \alpha) .
\end{aligned}
$$
\]

A proper edge-coloring of a graph G with colors $1,2, \ldots, t$ is an interval t-coloring if all colors are used, and for any vertex v of G, the set $S(v, \alpha)$ is an interval of consecutive integers. A graph G is interval colorable if it has an interval t-coloring for some positive integer t. The set of interval colorable graphs is denoted by \mathfrak{N}. For a graph $G \in \mathfrak{N}$, the least and the greatest values of t for which G has an interval t-coloring are denoted by $w(G)$ and $W(G)$, respectively.

The concept of interval edge-coloring was introduced by Asratian and Kamalian [1]. In [1,2], they proved that if G is interval colorable, then $\chi^{\prime}(G)=\Delta(G)$. For regular graphs the converse is also true. Moreover, if $G \in \mathfrak{N}$ is regular, then $w(G)=\Delta(G)$ and G has an interval t-coloring for every $t, w(G) \leq t \leq W(G)$. For a complete graph K_{m}, Vizing [13] proved that $\chi^{\prime}\left(K_{m}\right)=m-1$ if m is even and $\chi^{\prime}\left(K_{m}\right)=m$ if m is odd. These results imply that the complete graph is interval colorable if and only if the number of vertices is even. Moreover, $w\left(K_{2 n}\right)=2 n-1$, for any $n \in \mathbb{N}$. On the other hand, the problem of determining the exact value of $W\left(K_{2 n}\right)$ is open since 1990.

In [6] Kamalian proved the following upper bound on $W(G)$:
Theorem 1. If G is a connected graph with at least two vertices and $G \in \mathfrak{N}$, then $W(G) \leq 2|V(G)|-3$.
This upper bound was improved by Giaro, Kubale, Malafiejski in [4]:
Theorem 2. If G is a connected graph with at least three vertices and $G \in \mathfrak{N}$, then $W(G) \leq 2|V(G)|-4$.
Improved upper bounds on $W(G)$ are known for several classes of graphs, including triangle-free graphs [1,2], planar graphs [3] and r-regular graphs with at least $2 r+2$ vertices [7]. The exact value of the parameter $W(G)$ is known for even cycles, trees [5], complete bipartite graphs [5], Möbius ladders [10] and n-dimensional cubes [11,12]. This paper is focused on investigation of $W\left(K_{2 n}\right)$.

The first lower bound on $W\left(K_{2 n}\right)$ was obtained by Kamalian in [6]:
Theorem 3. For any $n \in \mathbb{N}, W\left(K_{2 n}\right) \geq 2 n-1+\left\lfloor\log _{2}(2 n-1)\right\rfloor$.
This bound was improved by the second author in [11]:
Theorem 4. For any $n \in \mathbb{N}, W\left(K_{2 n}\right) \geq 3 n-2$.
In the same paper he also proved the following statement:
Theorem 5. For any $n \in \mathbb{N}, W\left(K_{4 n}\right) \geq 4 n-1+W\left(K_{2 n}\right)$.
By combining these two results he obtained an even better lower bound on $W\left(K_{2 n}\right)$:
Theorem 6. If $n=p 2^{q}$, where p is odd, $q \in \mathbb{Z}_{+}$, then $W\left(K_{2 n}\right) \geq 4 n-2-p-q$.
In that paper the second author also posed the following conjecture:
Conjecture 1. If $n=p 2^{q}$, where p is odd, $q \in \mathbb{Z}_{+}$, then $W\left(K_{2 n}\right)=4 n-2-p-q$.
He verified this conjecture for $n \leq 4$, but the first author disproved it by constructing an interval 14-coloring of K_{10} in [8]. In "Cycles and Colorings 2012" workshop the second author presented another conjecture on $W\left(K_{2 n}\right)$:

Conjecture 2. If $n \in \mathbb{N}$, then $W\left(K_{2 n}\right)=4 n-2-\left\lfloor\log _{2} n\right\rfloor-\left\|n_{2}\right\|$, where $\left\|n_{2}\right\|$ is the number of 1 's in the binary representation of n.

In Section 2 we show that the problem of constructing an interval coloring of a complete graph $K_{2 n}$ is equivalent to finding a special 1-factorization of the same graph. In Section 3 we use this equivalence to improve the lower bounds of Theorems 4 and 5, and disprove Conjecture 2. Section 4 improves the upper bound of Theorem 2 for complete graphs. In Section 5 we determine the exact values of $W\left(K_{2 n}\right)$ for $n \leq 12$ and improve Theorem 6 .

2. From interval colorings to 1-factorizations

Let the vertex set of a complete graph $K_{2 n}$ be $V\left(K_{2 n}\right)=\left\{u_{i}, v_{i} \mid i=1,2, \ldots, n\right\}$. For any fixed ordering of the vertices $\mathbf{v}=$ $\left(u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{n}, v_{n}\right)$ we denote by $H_{\mathrm{v}}^{[i, j]}, i \leq j$, the subgraph of $K_{2 n}$ induced by the vertices $u_{i}, v_{i}, u_{i+1}, v_{i+1}, \ldots, u_{j}, v_{j}$.

Let $\mathfrak{F}=\left\{F_{1}, F_{2}, \ldots, F_{2 n-1}\right\}$ be a 1 -factorization of $K_{2 n}$. For every $F \in \mathfrak{F}$ we define its left and right parts with respect to the ordering of vertices \mathbf{v} :

$$
\begin{aligned}
l_{\mathbf{v}}^{i}(F) & =F \cap E\left(H_{\mathbf{v}}^{[1, i]}\right) \\
r_{\mathbf{v}}^{i}(F) & =F \cap E\left(H_{\mathbf{v}}^{[i+1, n]}\right)
\end{aligned}
$$

https://daneshyari.com/en/article/4646619

Download Persian Version:

https://daneshyari.com/article/4646619

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: hrant.khachatrian@ysu.am (H.H. Khachatrian), pet_petros@ipia.sci.am (P.A. Petrosyan).

