Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Interval edge-colorings of complete graphs

H.H. Khachatrian^{a,*}, P.A. Petrosyan^{a,b}

^a Department of Informatics and Applied Mathematics, Yerevan State University, Yerevan, 0025, Armenia
^b Institute for Informatics and Automation Problems, National Academy of Sciences, Yerevan, 0014, Armenia

ARTICLE INFO

Article history: Received 20 November 2014 Received in revised form 1 April 2016 Accepted 2 April 2016 Available online 6 May 2016

Keywords: Edge-coloring Interval edge-coloring Complete graph 1-factorization

ABSTRACT

An edge-coloring of a graph *G* with colors 1, 2, ..., *t* is an *interval t-coloring* if all colors are used, and the colors of edges incident to each vertex of *G* are distinct and form an interval of integers. A graph *G* is *interval colorable* if it has an interval *t*-coloring for some positive integer *t*. For an interval colorable graph *G*, *W*(*G*) denotes the greatest value of *t* for which *G* has an interval *t*-coloring. It is known that the complete graph is interval colorable if and only if the number of its vertices is even. However, the exact value of $W(K_{2n})$ is known only for $n \le 4$. The second author showed that if $n = p2^q$, where *p* is odd and *q* is nonnegative, then $W(K_{2n}) \ge 4n - 2 - p - q$. Later, he conjectured that if $n \in \mathbb{N}$, then $W(K_{2n}) = 4n - 2 - \lfloor \log_2 n \rfloor - \|n_2\|$, where $\|n_2\|$ is the number of 1's in the binary representation of *n*.

In this paper we introduce a new technique to construct interval colorings of complete graphs based on their 1-factorizations, which is used to disprove the conjecture, improve lower and upper bounds on $W(K_{2n})$ and determine its exact values for $n \leq 12$.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

All graphs in this paper are finite, undirected, have no loops or multiple edges. Let V(G) and E(G) denote the sets of vertices and edges of a graph *G*, respectively. For $S \subseteq V(G)$, G[S] denotes the subgraph of *G* induced by *S*, that is, V(G[S]) = S and E(G[S]) consists of those edges of E(G) for which both ends are in *S*. For a graph *G*, $\Delta(G)$ denotes the maximum degree of vertices in *G*. A graph *G* is *r*-*regular* if all its vertices have degree *r*. The set of edges *M* is called a *matching* if no two edges from *M* are adjacent. A vertex *v* is *covered* by the matching *M* if it is incident to one of the edges of *M*. A matching *M* is a *perfect matching* if it covers all the vertices of the graph *G*. The set of perfect matchings $\mathfrak{F} = \{F_1, F_2, \ldots, F_n\}$ is a 1-*factorization* of *G* if every edge of *G* belongs to exactly one of the perfect matchings in \mathfrak{F}. The set of integers $\{a, a + 1, \ldots, b\}, a \le b$, is denoted by [a, b]. The terms, notations and concepts that we do not define can be found in [14].

A proper edge-coloring of graph *G* is a coloring of the edges of *G* such that no two adjacent edges receive the same color. The chromatic index $\chi'(G)$ of a graph *G* is the minimum number of colors used in a proper edge-coloring of *G*. If α is a proper edge-coloring of *G* and $v \in V(G)$, then the spectrum of a vertex v, denoted by $S(v, \alpha)$, is the set of colors of edges incident to v. By $\underline{S}(v, \alpha)$ and $\overline{S}(v, \alpha)$ we denote the smallest and largest colors of the spectrum, respectively. If α is a proper edge-coloring

* Corresponding author. E-mail addresses: hrant.khachatrian@ysu.am (H.H. Khachatrian), pet_petros@ipia.sci.am (P.A. Petrosyan).

http://dx.doi.org/10.1016/j.disc.2016.04.002 0012-365X/© 2016 Elsevier B.V. All rights reserved.

of G and H is a subgraph of G, then we can define a union and intersection of spectrums of the vertices of H:

$$S_{\cap}(H, \alpha) = \bigcap_{v \in V(H)} S(v, \alpha)$$
$$S_{\cup}(H, \alpha) = \bigcup_{v \in V(H)} S(v, \alpha).$$

A proper edge-coloring of a graph *G* with colors 1, 2, ..., *t* is an *interval t-coloring* if all colors are used, and for any vertex *v* of *G*, the set $S(v, \alpha)$ is an interval of consecutive integers. A graph *G* is *interval colorable* if it has an interval *t*-coloring for some positive integer *t*. The set of interval colorable graphs is denoted by \mathfrak{N} . For a graph $G \in \mathfrak{N}$, the least and the greatest values of *t* for which *G* has an interval *t*-coloring are denoted by w(G) and W(G), respectively.

The concept of interval edge-coloring was introduced by Asratian and Kamalian [1]. In [1,2], they proved that if *G* is interval colorable, then $\chi'(G) = \Delta(G)$. For regular graphs the converse is also true. Moreover, if $G \in \mathfrak{N}$ is regular, then $w(G) = \Delta(G)$ and *G* has an interval *t*-coloring for every *t*, $w(G) \leq t \leq W(G)$. For a complete graph K_m , Vizing [13] proved that $\chi'(K_m) = m - 1$ if *m* is even and $\chi'(K_m) = m$ if *m* is odd. These results imply that the complete graph is interval colorable if and only if the number of vertices is even. Moreover, $w(K_{2n}) = 2n - 1$, for any $n \in \mathbb{N}$. On the other hand, the problem of determining the exact value of $W(K_{2n})$ is open since 1990.

In [6] Kamalian proved the following upper bound on W(G):

Theorem 1. If G is a connected graph with at least two vertices and $G \in \mathfrak{N}$, then $W(G) \leq 2|V(G)| - 3$.

This upper bound was improved by Giaro, Kubale, Malafiejski in [4]:

Theorem 2. If G is a connected graph with at least three vertices and $G \in \mathfrak{N}$, then $W(G) \leq 2|V(G)| - 4$.

Improved upper bounds on W(G) are known for several classes of graphs, including triangle-free graphs [1,2], planar graphs [3] and *r*-regular graphs with at least 2r + 2 vertices [7]. The exact value of the parameter W(G) is known for even cycles, trees [5], complete bipartite graphs [5], Möbius ladders [10] and *n*-dimensional cubes [11,12]. This paper is focused on investigation of $W(K_{2n})$.

The first lower bound on $W(K_{2n})$ was obtained by Kamalian in [6]:

Theorem 3. For any $n \in \mathbb{N}$, $W(K_{2n}) \ge 2n - 1 + \lfloor \log_2(2n - 1) \rfloor$.

This bound was improved by the second author in [11]:

Theorem 4. *For any* $n \in \mathbb{N}$ *,* $W(K_{2n}) \ge 3n - 2$ *.*

In the same paper he also proved the following statement:

Theorem 5. For any $n \in \mathbb{N}$, $W(K_{4n}) \ge 4n - 1 + W(K_{2n})$.

By combining these two results he obtained an even better lower bound on $W(K_{2n})$:

Theorem 6. If $n = p2^q$, where p is odd, $q \in \mathbb{Z}_+$, then $W(K_{2n}) \ge 4n - 2 - p - q$.

In that paper the second author also posed the following conjecture:

Conjecture 1. If $n = p2^q$, where p is odd, $q \in \mathbb{Z}_+$, then $W(K_{2n}) = 4n - 2 - p - q$.

He verified this conjecture for $n \le 4$, but the first author disproved it by constructing an interval 14-coloring of K_{10} in [8]. In "Cycles and Colorings 2012" workshop the second author presented another conjecture on $W(K_{2n})$:

Conjecture 2. If $n \in \mathbb{N}$, then $W(K_{2n}) = 4n - 2 - \lfloor \log_2 n \rfloor - \|n_2\|$, where $\|n_2\|$ is the number of 1's in the binary representation of n.

In Section 2 we show that the problem of constructing an interval coloring of a complete graph K_{2n} is equivalent to finding a special 1-factorization of the same graph. In Section 3 we use this equivalence to improve the lower bounds of Theorems 4 and 5, and disprove Conjecture 2. Section 4 improves the upper bound of Theorem 2 for complete graphs. In Section 5 we determine the exact values of $W(K_{2n})$ for $n \le 12$ and improve Theorem 6.

2. From interval colorings to 1-factorizations

Let the vertex set of a complete graph K_{2n} be $V(K_{2n}) = \{u_i, v_i \mid i = 1, 2, ..., n\}$. For any fixed ordering of the vertices $\mathbf{v} = (u_1, v_1, u_2, v_2, ..., u_n, v_n)$ we denote by $H_{\mathbf{v}}^{[i,j]}$, $i \le j$, the subgraph of K_{2n} induced by the vertices $u_i, v_i, u_{i+1}, v_{i+1}, ..., u_j, v_j$.

Let $\mathfrak{F} = \{F_1, F_2, \dots, F_{2n-1}\}$ be a 1-factorization of K_{2n} . For every $F \in \mathfrak{F}$ we define its *left and right parts* with respect to the ordering of vertices \mathbf{v} :

$$l_{\mathbf{v}}^{i}(F) = F \cap E\left(H_{\mathbf{v}}^{[1,i]}\right)$$
$$r_{\mathbf{v}}^{i}(F) = F \cap E\left(H_{\mathbf{v}}^{[i+1,n]}\right)$$

Download English Version:

https://daneshyari.com/en/article/4646619

Download Persian Version:

https://daneshyari.com/article/4646619

Daneshyari.com