On fan-wheel and tree-wheel Ramsey numbers

Yanbo Zhang ${ }^{\text {a,b }}$, Hajo Broersma ${ }^{\text {b }}$, Yaojun Chen ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Mathematics, Nanjing University, Nanjing 210093, PR China
${ }^{\mathrm{b}}$ Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

A R T I C L E I N F O

Article history:

Received 26 January 2015
Received in revised form 5 March 2016
Accepted 18 March 2016
Available online 6 May 2016

Keywords:

Ramsey number
Fan
Tree
Wheel

Abstract

For graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest integer N such that, for any graph G of order N, G contains G_{1} as a subgraph or the complement of G contains G_{2} as a subgraph. Let T_{n} denote a tree of order n, W_{n} a wheel of order $n+1$ and F_{n} a fan of order $2 n+1$. We establish Ramsey numbers for fans and trees versus wheels of even order, thereby extending several known results. In particular, we prove that $R\left(F_{n}, W_{m}\right)=6 n+1$ for odd $m \geq 3$ and $n \geq(5 m+3) / 4$, and that $R\left(T_{n}, W_{m}\right)=3 n-2$ for odd $m \geq 3$ and $n \geq m-2$, and T_{n} being a tree for which the Erdős-Sós Conjecture holds.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest integer N such that, for any graph G of order N, G contains G_{1} as a subgraph or \bar{G} contains G_{2} as a subgraph, where \bar{G} is the complement of G. Let $\chi(G)$ be the chromatic number of G and $s(G)$ the chromatic surplus of G, i.e., the minimum number of vertices in some color class under all proper vertex colorings with $\chi(G)$ colors. Let H be a connected graph of order p. Burr [6] established the following general lower bound for $R(H, G)$ when $p \geq s(G)$:

$$
R(H, G) \geq(p-1)(\chi(G)-1)+s(G)
$$

He also defined H to be G-good in case equality holds in this inequality.
A fan F_{n} consists of n triangles sharing exactly one common vertex. Thus, $\left|V\left(F_{n}\right)\right|=2 n+1$. A wheel W_{m} is the graph obtained from C_{m} and an additional vertex by joining it to every vertex of C_{m}. In this paper, our main aim is to consider when a fan F_{n} or a tree T_{n} is W_{m}-good for odd m. In order to do so, we first establish the following two auxiliary theorems.

Theorem 1. $R\left(n K_{2}, W_{m}\right)=\max \{2 n+\lceil m / 2\rceil, n+m\}$.
Theorem 2. $R\left(n K_{2}, C_{m}\right)=\max \{2 n+\lceil m / 2\rceil-1, n+m-1\}$.
Remark. Even though Theorem 2 is not an immediate consequence of Theorem 1, the proofs of the two theorems use basically the same method. We therefore omit the proof of Theorem 2. The proof of Theorem 1 is postponed to Section 3.

For Ramsey numbers of fans versus wheels of even order, Surahmat et al. proved that F_{n} is W_{3}-good for $n \geq 3$, and obtained the following result.

[^0]Theorem 3 (Surahmat et al. [16]). $R\left(F_{n}, W_{3}\right)=6 n+1$ for $n \geq 3$.
In our first main result we generalize the above result.
Theorem 4. $R\left(F_{n}, W_{m}\right)=6 n+1$ for odd $m \geq 3$ and $n \geq(5 m+3) / 4$.
The proof of Theorem 4 is postponed to Section 3.
For Ramsey numbers of trees versus odd cycles, Burr et al. confirmed that an arbitrary tree T_{n} on n vertices is C_{m}-good for odd $m \geq 3$ and $n \geq 756 m^{10}$.

Theorem 5 (Burr et al. [7]). $R\left(T_{n}, C_{m}\right)=2 n-1$ for odd $m \geq 3$ and $n \geq 756 m^{10}$.
As a tribute to Erdős and Sós, a tree T of order n is called an ES-tree if every graph $G=(V, E)$ with $|E|>|V|(n-2) / 2$ contains T as a subgraph. In 1963, Erdős and Sós conjectured that every tree is an ES-tree. Even though this conjecture is still open, it has been shown that many trees are indeed ES-trees. These results can be found in [10,15,9,17,13,11]. Two additional results were announced without being published. As mentioned in [14], Perles proved in 1990 that caterpillars are ES-trees, where a caterpillar is a tree in which a single path is incident to (or contains) every edge. Ajtai et al. [1] announced that all sufficiently large trees are ES-trees.

In the following, we first present a result on Ramsey numbers of ES-trees versus odd cycles. This turns out to be easy to prove, as is clear from the proof in Section 3. Using this result, we establish a theorem on Ramsey numbers of ES-trees versus wheels of even order. By this result we generalize (to some extent) results on Ramsey numbers of wheels versus special trees, including stars, paths and star-like trees. All proofs are postponed to Section 3.

Theorem 6. $R\left(T_{n}, C_{m}\right)=2 n-1$ for every ES-tree T_{n}, odd $m \geq 3$ and $n \geq m-1$.
Theorem 7. $R\left(T_{n}, W_{m}\right)=3 n-2$ for every ES-tree T_{n}, odd $m \geq 3$ and $n \geq m-2$.
From Theorem 7 a more general result can be obtained by induction.
Theorem 8. $R\left(T_{n}, K_{\ell}+C_{m}\right)=(\ell+2)(n-1)+1$ for every $E S$-tree T_{n}, odd $m \geq 3, \ell \geq 1$ and $n \geq m-2$.
We conjecture that the above three theorems hold for all trees. If so, it provides more evidence that the Erdős-Sós Conjecture is true.

Terminology will in general follow that used in [3]. In particular, the length of a longest and shortest cycle of G is denoted by $c(G)$ and $g(G)$, respectively. A graph G is weakly pancyclic if it contains cycles of every length between $g(G)$ and $c(G)$. For two vertex-disjoint graphs G_{1} and $G_{2}, G_{1} \cup G_{2}$ denotes the disjoint union, and the join $G_{1}+G_{2}$ is the graph obtained from $G_{1} \cup G_{2}$ by joining every vertex of G_{1} to every vertex of G_{2} by an edge. We use $m G$ to denote m vertex-disjoint copies of G.

2. Lemmas

In order to prove our main theorems, we need the following results.
Lemma 1 (Brandt [4]). Every nonbipartite graph G of order n with $e(G)>(n-1)^{2} / 4+1$ is weakly pancyclic with $g(G)=3$.
Lemma 2 (Brandt et al. [5]). Every nonbipartite graph G of order n with $\delta(G) \geq(n+2) / 3$ is weakly pancyclic with $g(G)=3$ or 4.

Lemma 3 (Dirac [8]). Let G be a graph with $\delta(G) \geq 2$. Then $c(G) \geq \delta(G)+1$. Moreover, if $\delta(G) \geq|V(G)| / 2$, then G has a Hamilton cycle.

Lemma 4 (Erdős and Gallai [10]). Let G be a graph of order n and $3 \leq c \leq n$. If $e(G) \geq 1 / 2((c-1)(n-1)+1)$, then $c(G) \geq c$.
Lemma 5 (Erdős and Gallai [10]). Let G be a graph of order n. If $e(G)>n(k-2) / 2$, then G contains a path on k vertices.
Lemma 6 (Hasmawati et al. [12]). If m is odd and $3 \leq m \leq 2 n-1$, then $R\left(K_{1, n-1}, W_{m}\right)=3 n-2$.
Lemma 7 (Baskoro et al.[2]). For odd $n \geq 3$, let G be a graph of order n which is obtained from K_{n} by removing $\lfloor n / 2\rfloor$ independent edges. Then G contains all trees on n vertices.

The following lemma is an established result that is straightforward to prove using a Greedy algorithm.
Lemma 8. Let G be a graph with $\delta(G) \geq k$, and let $u \in V(G)$. Let T be a tree of order $k+1$ with $v \in V(T)$. Then T can be embedded in G such that v is mapped to u.

https://daneshyari.com/en/article/4646622

Download Persian Version:
https://daneshyari.com/article/4646622

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: yaojunc@nju.edu.cn (Y. Chen).

