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thereby extending several known results. In particular, we prove that R(F,, W;;) = 6n+ 1
forodd m > 3 and n > (5m + 3)/4, and that R(T,, W;;) = 3n — 2 for odd m > 3 and

Ilg?r)r‘:\; Z;d;:umber n > m — 2, and T, being a tree for which the Erd6s-Sés Conjecture holds.
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1. Introduction

For graphs G; and G,, the Ramsey number R(G1, G,) is the smallest integer N such that, for any graph G of order N,
G contains G; as a subgraph or G contains G, as a subgraph, where G is the complement of G. Let x (G) be the chromatic
number of G and s(G) the chromatic surplus of G, i.e., the minimum number of vertices in some color class under all proper
vertex colorings with x (G) colors. Let H be a connected graph of order p. Burr [6] established the following general lower
bound for R(H, G) when p > s(G):

R(H,G) = (p = D(x(G) = 1) +5(G).

He also defined H to be G-good in case equality holds in this inequality.

A fan F, consists of n triangles sharing exactly one common vertex. Thus, |V (F,)| = 2n + 1. A wheel W,, is the graph
obtained from G, and an additional vertex by joining it to every vertex of C. In this paper, our main aim is to consider when
afan F, or a tree T, is Wp,-good for odd m. In order to do so, we first establish the following two auxiliary theorems.

Theorem 1. R(nK;, Wy;) = max{2n + [m/2], n + m}.
Theorem 2. R(nK;, C,) = max{2n+ [m/2] — 1,n+m — 1}.
Remark. Even though Theorem 2 is not an immediate consequence of Theorem 1, the proofs of the two theorems use

basically the same method. We therefore omit the proof of Theorem 2. The proof of Theorem 1 is postponed to Section 3.

For Ramsey numbers of fans versus wheels of even order, Surahmat et al. proved that F, is W3-good for n > 3, and
obtained the following result.
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Theorem 3 (Surahmat et al. [16]). R(F,, W3) = 6n + 1 for n > 3.

In our first main result we generalize the above result.

Theorem 4. R(F,,, W,;;) = 6n+ 1foroddm > 3 andn > (5m + 3)/4.

The proof of Theorem 4 is postponed to Section 3.
For Ramsey numbers of trees versus odd cycles, Burr et al. confirmed that an arbitrary tree T, on n vertices is C;;-good
for odd m > 3 and n > 756m'°.

Theorem 5 (Burretal. [7]). R(T,, Cy,) = 2n — 1 forodd m > 3 and n > 756m'°.

As a tribute to Erdds and Sés, a tree T of order n is called an ES-tree if every graph G = (V, E) with |[E| > |[V|(n — 2)/2
contains T as a subgraph. In 1963, Erdés and Sds conjectured that every tree is an ES-tree. Even though this conjecture is still
open, it has been shown that many trees are indeed ES-trees. These results can be found in [10,15,9,17,13,11]. Two additional
results were announced without being published. As mentioned in [ 14], Perles proved in 1990 that caterpillars are ES-trees,
where a caterpillar is a tree in which a single path is incident to (or contains) every edge. Ajtai et al. [ 1] announced that all
sufficiently large trees are ES-trees.

In the following, we first present a result on Ramsey numbers of ES-trees versus odd cycles. This turns out to be easy
to prove, as is clear from the proof in Section 3. Using this result, we establish a theorem on Ramsey numbers of ES-trees
versus wheels of even order. By this result we generalize (to some extent) results on Ramsey numbers of wheels versus
special trees, including stars, paths and star-like trees. All proofs are postponed to Section 3.

Theorem 6. R(T,, C;;) = 2n — 1 for every ES-tree T,,odd m > 3andn > m — 1.

Theorem 7. R(T,,, W,,) = 3n — 2 for every ES-tree T,, odd m > 3andn > m — 2.
From Theorem 7 a more general result can be obtained by induction.

Theorem 8. R(T,,, K, + Cp,) = (£ + 2)(n — 1) + 1 for every ES-tree T,,oddm > 3,£ > landn > m — 2.

We conjecture that the above three theorems hold for all trees. If so, it provides more evidence that the Erdds-S6s
Conjecture is true.

Terminology will in general follow that used in [3]. In particular, the length of a longest and shortest cycle of G is denoted
by c(G) and g(G), respectively. A graph G is weakly pancyclic if it contains cycles of every length between g (G) and c(G). For
two vertex-disjoint graphs G; and G,, G1 U G, denotes the disjoint union, and the join G; + G, is the graph obtained from
G1 U G, by joining every vertex of G; to every vertex of G, by an edge. We use mG to denote m vertex-disjoint copies of G.

2. Lemmas
In order to prove our main theorems, we need the following results.
Lemma 1 (Brandt [4]). Every nonbipartite graph G of order n with e(G) > (n — 1)?/4 + 1 is weakly pancyclic with g(G) = 3.

Lemma 2 (Brandt et al. [5]). Every nonbipartite graph G of order n with §(G) > (n + 2)/3 is weakly pancyclic with g(G) = 3
or4.

Lemma 3 (Dirac [8]). Let G be a graph with 6(G) > 2. Then c(G) > &(G) + 1. Moreover, if §(G) > |V(G)|/2, then G has a
Hamilton cycle.

Lemma 4 (Erdés and Gallai [10]). Let G be a graph of order nand3 <c < n.If e(G) > 1/2((c—1)(n—1) + 1), thenc(G) > c.
Lemma 5 (Erdds and Gallai [10]). Let G be a graph of order n. If e(G) > n(k — 2)/2, then G contains a path on k vertices.
Lemma 6 (Hasmawatiet al. [12]).If misodd and 3 <m < 2n — 1, then R(Ky p—1, W) = 3n — 2.

Lemma 7 (Baskoro etal. [2]). Foroddn > 3, let G be a graph of order n which is obtained from K, by removing |n/2 | independent
edges. Then G contains all trees on n vertices.

The following lemma is an established result that is straightforward to prove using a Greedy algorithm.

Lemma 8. Let G be a graph with §(G) > k, and let u € V(G). Let T be a tree of order k + 1 with v € V(T). Then T can be
embedded in G such that v is mapped to u.
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