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a b s t r a c t

Boolean functions have important applications in cryptography and coding theory. Two
famous classes of binary codes derived from Boolean functions are the Reed–Muller codes
and Kerdock codes. In the past two decades, a lot of progress on the study of applications of
Boolean functions in coding theory has been made. Two generic constructions of binary
linear codes with Boolean functions have been well investigated in the literature. The
objective of this paper is twofold. The first is to provide a survey on recent results, and
the other is to propose open problems on one of the two generic constructions of binary
linear codeswith Boolean functions. These openproblems are expected to stimulate further
research on binary linear codes from Boolean functions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let p be a prime and let q = pm for some positive integer m. An [n, k, d] code C over GF(p) is a k-dimensional subspace
of GF(p)n with minimum (Hamming) distance d. Let Ai denote the number of codewords with Hamming weight i in a code
C of length n. The weight enumerator of C is defined by 1 + A1z + A2z2 + · · · + Anzn. The sequence (1, A1, A2, . . . , An) is
called theweight distribution of the codeC. A codeC is said to be a t-weight code if the number of nonzero Ai in the sequence
(A1, A2, . . . , An) is equal to t .

Boolean functions are functions from GF(2m) or GF(2)m to GF(2). They are important building blocks for certain types
of stream ciphers, and can also be employed to construct binary codes. Two famous families of binary codes are the
Reed–Muller codes [61,57] and Kerdock codes [9,10,47]. In the literature two generic constructions of binary linear codes
from Boolean functions have been well investigated. A lot of progress on the study of one of the two constructions has been
made in the past decade. The objective of this paper is twofold. The first one is to provide a survey on recent development
on this construction, and the other is to propose open problems on this generic constructions of binary linear codes with
Boolean functions. These open problems are expected to stimulate further research on binary linear codes from Boolean
functions.

2. Mathematical foundations

2.1. Difference sets

For convenience later, we define the difference function of a subset D of an abelian group (A, +) as
diffD(x) = |D ∩ (D + x)|, (1)

where D + x = {y + x : y ∈ D}.
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A subset D of size k in an abelian group (A, +) with order v is called a (v, k, λ) difference set in (A, +) if the difference
function diffD(x) = λ for every nonzero x ∈ A. A difference set D in (A, +) is called cyclic if the abelian group A is cyclic.

Difference sets could be employed to construct linear codes in differentways. The reader is referred to [26,27] for detailed
information. Some of the codes presented in this survey paper are also defined by difference sets.

2.2. Group characters in GF(q)

An additive character of GF(q) is a nonzero function χ from GF(q) to the set of nonzero complex numbers such that
χ(x + y) = χ(x)χ(y) for any pair (x, y) ∈ GF(q)2. For each b ∈ GF(q), the function

χb(c) = ϵTr(bc)
p for all c ∈ GF(q) (2)

defines an additive character of GF(q), where and whereafter ϵp = e2π
√

−1/p is a primitive complex pth root of unity and Tr
is the absolute trace function. When b = 0, χ0(c) = 1 for all c ∈ GF(q), and is called the trivial additive character of GF(q).
The character χ1 in (2) is called the canonical additive character of GF(q). It is known that every additive character of GF(q)
can be written as χb(x) = χ1(bx) [48, Theorem 5.7].

2.3. Special types of polynomials over GF(q)

It is well known that every function from GF(q) to GF(q) can be expressed as a polynomial over GF(q). A polynomial
f ∈ GF(q)[x] is called a permutation polynomial if the associated polynomial function f : a → f (a) from GF(q) to GF(q) is a
permutation of GF(q).

Dickson polynomials of the first kind over GF(q) are defined by

Dh(x, a) =

⌊
h
2 ⌋

i=0

h
h − i


h − i
i


(−a)ixh−2i, (3)

where a ∈ GF(q) and h is called the order of the polynomial. Some of the linear codes that will be presented in this paper
are defined by Dickson permutation polynomials of order 5 over GF(2m).

A polynomial f ∈ GF(q)[x] is said to be e-to-1 if the equation f (x) = b over GF(q) has either e solutions x ∈ GF(q) or no
solution for every b ∈ GF(q), where e ≥ 1 is an integer, and e divides q. By definition, permutation polynomials are 1-to-1.
In this survey paper, we need e-to-1 polynomials over GF(2m) for the construction of binary linear codes.

2.4. Boolean functions and their expressions

A function f fromGF(2m) or GF(2)m to GF(2) is called a Boolean function. A function f fromGF(2m) to GF(2) is called linear
if f (x + y) = f (x) + f (y) for all (x, y) ∈ GF(2m)2. A function f from GF(2m) to GF(2) is called affine if f or f − 1 is linear.

TheWalsh transform of f : GF(2m) → GF(2) is defined by

f̂ (w) =


x∈GF(2m)

(−1)f (x)+Tr(wx) (4)

where w ∈ GF(2m). TheWalsh spectrum of f is the following multiset
f̂ (w) : w ∈ GF(2m)


.

Let f be a Boolean function from GF(2m) to GF(2). The support of f is defined to be

Df = {x ∈ GF(2m) : f (x) = 1} ⊆ GF(2m). (5)

Clearly, f → Df is a one-to-one correspondence between the set of Boolean functions from GF(2m) to GF(2) and the power
set of GF(2m).

3. The first generic construction of linear codes from functions

Let f be any polynomial from GF(q) to GF(q), where q = pm. A code over GF(p) is defined by

C(f ) = {c = (Tr(af (x) + bx))x∈GF(q) : a ∈ GF(q), b ∈ GF(q)},

where Tr is the absolute trace function. Its length is q, and its dimension is at most 2m and is equal to 2m in many cases. The
dual of C(f ) has dimension at least q − 2m.

Let f be any polynomial from GF(q) to GF(q) such that f (0) = 0. A code over GF(p) is defined by

C∗(f ) = {c = (Tr(af (x) + bx))x∈GF(q)∗ : a ∈ GF(q), b ∈ GF(q)}.
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