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a b s t r a c t

For integer k ≥ 2 and prime power q, Lazebnik and Ustimenko (1995) proposed an
algebraic bipartite graph D(k, q) which is q-regular, edge-transitive and of large girth.
Füredi et al. (1995) conjectured that D(k, q) has girth k + 5 for all odd k and all q ≥ 4 and,
shown that this conjecture is true for the case that (k+5)/2divides q−1. Cheng et al. (2014)
shown that this conjecture is true for the case that (k + 5)/2 is an arbitrary power of the
characteristic of Fq. In this paper, we propose a generalization for the binomial coefficients
and show that this conjecture is true when (k + 5)/2 is the product of an arbitrary factor
of q − 1 and an arbitrary power of the characteristic of Fq.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The graphswe consider in this paper are simple, i.e. undirected,without loops andmultiple edges. For a graphG, its vertex
set and edge set are denoted by V (G) and E(G), respectively. The degree (or valency) of a vertex v ∈ G is the number of the
vertices that are adjacent to it. A graph is said to be r-regular if the degree of any vertex is equal to r . An automorphism of
graphG is a bijectionφ fromV (G) to itself such that {φ(v), φ(v′)} is an edge iff {v, v′

} is. GraphG is said to be vertex-transitive
if for any two vertices v1, v2 there is an automorphism φ of G such that φ(v1) = v2. Graph G is said to be edge-transitive if
for any two edges {v1, v

′

1}, {v2, v
′

2} there is an automorphism φ of G such that φ({v1, v
′

1}) = {v2, v
′

2}. A sequence v1v2 · · · vn
of vertices of G is called a non-recurrent walk of length n if {vi, vi+1} ∈ E(G) for i = 1, 2, . . . , n − 1 and vj ≠ vj+2 for
j = 1, 2, . . . , n − 2. A non-recurrent walk v1v2 · · · vn is called a non-recurrent circuit further if its length n is not smaller
than 3 and v3v4 · · · vnv1v2 is still a non-recurrent walk. If graph G contains at least one non-recurrent circuit, then the girth
of G, denoted by g(G), is the length of a shortest non-recurrent circuit in G. Clearly, in graph G the non-recurrent circuits of
length g(G) are just the girth cycles of G.

In literature, graphs with large girth and a high degree of symmetry have been applied to variant problems in extremal
graph theory, finite geometry, coding theory, cryptography, communication networks and quantum computations (c.f. [1]
to [19]). For example, one of the most attractive progresses in coding theory is the study on the low-density parity-check
(LDPC) codes. Many of the LDPC codes with low-complexity decoding and near Shannon limit performance are constructed
by using bipartite graphs of large girth. Indeed, the girth of the Tanner graph of an LDPC code has been widely trusted to be
the main parameter affecting its error performance, such as the error floor. Large girth usually leads fast convergence for
iterative decoding of LDPC codes.
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For integer k ≥ 2 and prime power q, in [6] Lazebnik and Ustimenko proposed a bipartite graph, denoted by D(k, q),
which is q-regular, edge-transitive and of large girth. D(k, q) has been investigated quite well (cf. [1] to [17]). The girth of
D(k, q) is at least k + 4 for k ≥ 3. The connected components of D(k, q) provide the best-known asymptotic lower bound
for the greatest number of edges in graphs of their order and girth, with the exceptions of k = 7, 8.

It is of interest to know whether D(k, q) has larger girth than the lower bound. Since the length of any non-recurrent
circuit in a bipartite graph is even, the girth of D(k, q) is at least k + 5 for odd k. The following conjecture was proposed
in [3]:

Conjecture A. D(k, q) has girth k + 5 for all odd k and all q ≥ 4.

Conjecture A has been proved in [3] for the case that (k + 5)/2 divides q − 1 and in [1] for the case that (k + 5)/2 is a
power of the characteristic of Fq, respectively. We will show in this paper that Conjecture A is valid when (k + 5)/2 is the
product of an arbitrary factor of q − 1 and an arbitrary power of the characteristic of the finite field Fq.

This paper is arranged as follows. To show the main result, we introduce a generalization for the binomial coefficients in
Section 2 at first. Then, by using this generalization and the closed-form expression of the non-recurrent walks given in [1],
we show the main result of this paper in Section 3.

2. A generalization of the binomial coefficients

In this section, we consider to generalize the binomial coefficient
k+s

k


=

(k+s)!
k!s! .

Let Fq be the finite field of q elements. Let b ∈ F∗
q = Fq \{0} be a fixed element of order h, where h is the smallest positive

integer such that bh = 1. For nonnegative integers k and s, in Fq we define

θ(k, s) =


⌊k/h⌋ + ⌊s/h⌋

⌊k/h⌋

 s mod h
j=1

bk+j
− 1

bj − 1
, (1)

where s mod h is the smallest nonnegative integer such that h divides s − s mod h and, we define
0

j=1
bk+j

−1
bj−1

= 1 as the
unit of the finite field Fq by convention. Furthermore, we define θ(k, s) = 0 if k < 0 or s < 0.

Since for any nonnegative integers k and s we have

k mod h
j=1

bs+j
− 1

bj − 1
=

s mod h
j=1

bk+j
− 1

bj − 1
,

we see that θ(k, s) is symmetric with respect to parameters k and s, namely,

θ(k, s) = θ(s, k). (2)

From the definition of θ(k, s), we also see easily that

θ(k, s) = 0 if k mod h + s mod h ≥ h, (3)

θ(k, s) =


⌊k/h⌋ + ⌊s/h⌋

⌊k/h⌋


if h|k or h|s, (4)

where the binomial coefficient is treated as an element of the finite field Fq. We note that θ(k, s) can be seen as a
generalization of the binomial coefficient

k+s
s


in finite fields, since

k + s
k


=

(k + s)!
k!s!

= lim
x→1

s
j=1

xk+j
− 1

xj − 1
.

Below we present several properties of θ(k, s) which will be used in Section 3.

Lemma 1. For any integers k, s with |k| + |s| ≠ 0,

θ(k, s) = bkθ(k, s − 1) + θ(k − 1, s), (5)

θ(k, s) = θ(k, s − 1) + bsθ(k − 1, s). (6)

Proof. We only prove the equality (5). The equality (6) can be proved simply from (5) and the symmetry of θ(k, s).
If k < 0 or s < 0, then θ(k, s) = θ(k, s−1) = θ(k−1, s) = 0 and thus (5) follows. If k = 0, then s ≠ 0 and thus (5) follows

from bk = 1, θ(k, s) = θ(k, s − 1) and θ(k − 1, s) = 0. If s = 0, then k ≠ 0 and thus (5) follows from θ(k, s) = θ(k − 1, s)
and θ(k, s − 1) = 0.
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