
Discrete Mathematics 339 (2016) 428–442

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Local and global colorability of graphs
Noga Alon a,b,c, Omri Ben-Eliezer b,∗
a Sackler School of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel
b Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
c School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, United States

a r t i c l e i n f o

Article history:
Received 3 November 2014
Received in revised form 4 September 2015
Accepted 5 September 2015
Available online 1 October 2015

Keywords:
Local colorability
Local chromatic number
2-degeneracy

a b s t r a c t

It is shown that for any fixed c ≥ 3 and r , the maximum possible chromatic number of a
graph on n vertices in which every subgraph of radius at most r is c-colorable is Θ̃


n

1
r+1


:

it is O

(n/ log n)

1
r+1


and Ω


n

1
r+1 / log n


. The proof is based on a careful analysis of the

local and global colorability of random graphs and implies, in particular, that a random n-
vertex graphwith the right edge probability has typically a chromatic number as above and
yet most balls of radius r in it are 2-degenerate.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Notation and definitions

For a simple undirected graph G = (V , E) denote by d(u, v) the distance between the vertices u, v ∈ V . The degree of a
vertex v ∈ V , denoted by deg(v), is the number of its neighbors in G. A subset V ′

⊆ V is independent if no edge of G has
both of its endpoints in V ′. The chromatic number of G, denoted by χ(G), is the minimal number of independent subsets of
V whose union covers V . A graph is k-degenerate if the minimum degree of every subgraph of it is at most k. In particular, a
k-degenerate graph is k + 1-colorable. We will work with random graphs Gn,p in the Erdős–Rényi model, where there are
n labeled vertices and each edge is included in the graph with probability p, independently of all other edges. We say that
a property of G holds with high probability (w.h.p.) if this property holds with probability that tends to 1 as n tends to ∞.
In this paper we are only interested in graphs with large chromatic number ℓ. It will be therefore equivalent to say that a
property holds w.h.p. if its probability tends to 1 as ℓ tends to ∞.

Consider the following definition of r-local colorability:

Definition 1.1. Let r be a positive integer. Let Ur(v,G) be the ball with radius r around v ∈ V in G (i.e. the induced subgraph
on all vertices in V whose distance from v is ≤ r). Let

ℓχr(G) = max
v∈V

χ(Ur(v,G)) (1.1)

denote the r-local chromatic number of G.

We also say that Ur(v,G) is the r-ball around v in G. Finally, we define the main quantity discussed in this paper.
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Definition 1.2. For ℓ ≥ c ≥ 2 and r > 0 let fc(ℓ, r) be the greatest integer n such that every graph on n vertices whose
r-local chromatic number is ≤ c is ℓ-colorable.

In other words, fc(ℓ, r) + 1 is the minimal number of vertices in a non-ℓ-colorable graph in which every r-ball is c-
colorable. Note that fc1(ℓ, r) ≤ fc2(ℓ, r) for c1 ≥ c2.

Definitions 1.1 and 1.2 appear explicitly in the paper of Bogdanov [5], but the quantity fc(ℓ, r) itself has been investigated
well before (see Sections 1.2 and 8 for more details).

The main goal of this paper is to estimate fc(ℓ, r) for fixed c, r as ℓ tends to ∞. The main result is an upper bound tight
up to a polylogarithmic factor for fc(ℓ, r) for all fixed c ≥ 3 and r .

1.2. Background and our contribution

Fix an r > 0. Somewhat surprisingly, the gap between f2(ℓ, r) and f3(ℓ, r) might be much bigger than the gap between
f3(ℓ, r) and fc(ℓ, r) for any other fixed c ≥ 3. Here is a short background on previous results regarding fc(ℓ, r) for fixed c
and r and large ℓ and our contributions to these problems.

Known upper bounds for fc(ℓ, r) with fixed c, r, large ℓ

Erdős [7] showed that for sufficiently large m there exists a graph G with m1+1/2k vertices, that neither contains a cycle
of length ≤ k nor an independent set of sizem. As an easy consequence, G is notm1/2k-colorable. Put k = 2r + 1, ℓ = m1/2k

and note that G has n = m1+1/2k
= ℓ2k+1

= ℓ4r+3 vertices and ℓχr(G) ≤ 2 but is not ℓ-colorable. Hence

f2(ℓ, r) < ℓ4r+3.

A better estimate follows from the results of Krivelevich in [11]. Indeed, Theorem 1 in his paper implies that there exists an
absolute positive constant c so that

f2(ℓ, r) < (cℓ log ℓ)2r . (1.2)

An upper bound for f3(ℓ, r) can be derived from another result by Erdős [8]. Erdős worked with random graphs in the Gn,m
model, in which we consider random graphs with n vertices and exactly m edges. He showed that with probability > 0.8
and for k ≤ O(n1/3) large enough, Gn,kn is not k

log k -colorable but every subgraph spanned by O(nk−3) vertices is 3-colorable.
It is easy to show that with high probability every r-ball in Gn,kn has O(k)r vertices (later we prove and apply a similar

result for graphs in the Gn,p model). Combining the above results and taking k = 2ℓ log ℓ, n = O(k)r+3
= O(ℓ log ℓ)r+3,

it follows that with positive probability the graph Gn,kn is not ℓ-colorable but every r-ball (and in fact every subgraph on
O(nk−3) = O(k)r vertices) is 3-colorable. Hence there exists β > 0 such that:

fc(ℓ, r) ≤ f3(ℓ, r) ≤ (βℓ log ℓ)r+3 (1.3)

for large ℓ, fixed r ≥ 3 and for c ≥ 3.

Lower bounds for fc(ℓ, r) with fixed c, r, large ℓ

Bogdanov [5] showed that for all r > 0 and ℓ ≥ c ≥ 2:

fc(ℓ, r) ≥
(ℓ/c + r/2)(ℓ/c + r/2 + 1) · · · (ℓ/c + 3r/2)

(r + 1)r+1
≥


ℓ/c + r/2

r + 1

r+1

. (1.4)

When c and r are fixed, (1.4) implies that fc(ℓ, r) = Ω(ℓr+1). In Section 7.2, we improve the lower bound in this domain by
a logarithmic factor: it is shown that for fixed c ≥ 2 and r , fc(ℓ, r) = Ω


ℓr+1 log ℓ


.

A special case - fc(ℓ, 1) for fixed c, large ℓ

It is not hard to prove that f2(ℓ, 1) = Θ(ℓ2 log ℓ), using the known fact that the Ramsey number R(t, 3) is Θ(t2/ log t)
(see [1,10]). In Section 7 we extend this result to every fixed c ≥ 2, showing that fc(ℓ, 1) = Θ(ℓ2 log ℓ) for fixed c ≥ 2.

The main contribution
The main result in this paper is an improved upper bound for f3(ℓ, r). We show that for fixed r > 0:

f3(ℓ, r) ≤ (10ℓ log ℓ)r+1 . (1.5)

Fix r and c ≥ 3. By the result above, together with our new lower bound, it follows that there exists a constant δ = δ(r, c)
such that

δℓr+1 log ℓ ≤ fc(ℓ, r) ≤ f3(ℓ, r) ≤ (10ℓ log ℓ)r+1. (1.6)
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