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a b s t r a c t

The boxicity (respectively cubicity) of a graph G is the least integer k such that G can be
represented as an intersection graph of axis-parallel k-dimensional boxes (respectively k-
dimensional unit cubes) and is denoted by box(G) (respectively cub(G)). It was shown by
Adiga and Chandran (2010) that for any graph G, cub(G) ≤ box(G) ⌈log2 α(G)⌉, where
α(G) is the maximum size of an independent set in G. In this note we show that cub(G) ≤

2 ⌈log2 χ(G)⌉ box(G) + χ(G) ⌈log2 α(G)⌉, where χ(G) is the chromatic number of G. This
result can provide a much better upper bound than that of Adiga and Chandran for graph
classes with bounded chromatic number. For example, for bipartite graphs we obtain
cub(G) ≤ 2(box(G) + ⌈log2 α(G)⌉).

Moreover, we show that for every positive integer k, there exist graphs with chromatic
number k such that for every ϵ > 0, the value given by our upper bound is at most (1 + ϵ)
times their cubicity. Thus, our upper bound is almost tight.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A graph G is an intersection graph of sets from a family of sets F , if there exists f : V (G) → F such that uv ∈ E(G) ⇔

f (u) ∩ f (v) ≠ ∅. An interval graph is an intersection graph in which the set assigned to each vertex is a closed interval on
the real line. In other words, an interval graph is an intersection graph of closed intervals on the real line. Similarly, a unit
interval graph is an intersection graph of closed unit intervals on the real line. An axis-parallel k-dimensional box, abbreviated
to k-box, is a Cartesian product of the form R1 × · · · × Rk, where each Ri is an interval of the form [ai, bi] on the real line.
A k-cube is a k-box such that each Ri is an interval of the form [ai, ai + 1]. Given a graph G that is an intersection graph
of k-boxes (respectively k-cubes), we call a function f a k-box representation (respectively k-cube representation) of G if f
is a function that maps the vertices of G to k-boxes (respectively k-cubes) such that for any two vertices u, v ∈ V (G), it
holds that uv ∈ E(G) if and only if f (u) ∩ f (v) ≠ ∅. The boxicity (respectively cubicity) of a graph G, denoted by box(G)
(respectively cub(G)), is the minimum non-negative integer k such that G has a k-box representation (respectively k-cube
representation). Only complete graphs have boxicity (cubicity) 0. The class of graphs with boxicity at most 1 is the class of
interval graphs, and the class of graphswith cubicity atmost 1 is the class of unit interval graphs.WhenH1 andH2 are graphs
such that V (H1) = V (H2) = V (G) and E(G) = E(H1)∩E(H2), wewrite G = H1 ∩H2. The following observationwasmade by
F.S. Roberts [7].
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Lemma 1 ([7]). The boxicity of a non-complete graph G equals the least k such that there exist interval graphs I1, . . . , Ik such that
G = I1 ∩ · · · ∩ Ik. The cubicity of a non-complete graph G equals the least k such that there exist unit interval graphs U1, . . . ,Uk
such that G = U1 ∩ · · · ∩ Uk.

In the rest of the paper, we shall use n to denote the number of vertices of the graph being discussed. Logarithms will be
to the base 2, unless otherwise specified.

Clearly, for any graph G, box(G) ≤ cub(G). This suggests the following question: does there exist a function g such
that cub(G) ≤ g(box(G))? It is easy to see that the answer is negative: consider a star on n + 1 vertices. Its cubicity is
⌈log n⌉ [7] whereas its boxicity is 1, since a star is an interval graph. Chandran andMathew [5] showed that for any graph G,
cub(G) ≤ box(G) ⌈log n⌉, where n is the number of vertices. Adiga and Chandran [3] improved this result by showing that
n can be replaced by the size α(G) of a maximum independent set in G.

Lemma 2 ([3]). For any graph G, cub(G) ≤ box(G) ⌈logα(G)⌉.

Remark. We demonstrate next that the bound in the above lemma is tight, i.e., given any two integers b and α, where
b ≥ 1 and α ≥ 2, we show that there exists a graph G with box(G) = b, α(G) = α and cub(G) = b⌈logα⌉. It was shown
by Roberts in [7] that for p, n1, . . . , np ≥ 2, the complete p-partite graph with ni vertices in the ith part has boxicity p
and cubicity

p
i=1⌈log ni⌉. Therefore, when b ≥ 2 the complete b-partite graph with α vertices in each part will serve our

purpose. If b = 1, then a star with α + 1 vertices has the desired properties, as mentioned above (see [7]).

In a loose sense, the two factors in the upper bound on cub(G) given in Lemma 2, namely ⌈logα(G)⌉ and box(G),
individually can make the cubicity of a graph high. Clearly box(G) is a lower bound for cub(G) since cubes are specialized
boxes. The other term ⌈logα(G)⌉ can make cub(G) high due to a geometric reason, captured in the so-called ‘volume
argument’, whichwe reproduce here (also see [6]): let cub(G) = k and let d be the diameter of G. By considering the extreme
intervals when a cube representation in k dimensions is projected in a fixed dimension, the projection in each dimension is
contained in an interval of length d+ 1. Hence the volume of a representation is at most (d+ 1)k. Also the volume is at least
α(G), since it contains that many disjoint cubes. Hence, cub(G) ≥


logd+1 α(G)


.

Thus M = max(box(G),

logd+1 α(G)


) ≤ cub(G). It is natural to ask whether there exists a function g such that

cub(G) ≤ g(M). The answer is no, since we can increase the diameter of a graph without bound without affecting its cubic-
ity. For example, if G is the graph obtained by identifying one endpoint of a path on 2n+ 1 vertices with the leaf of a star on
n+1 vertices, it is easy to check that box(G) = 1, α(G) = 2n, the diameter d of G equals 2n+2 and henceM = max{box(G),
⌈logα(G)/ log(d + 1)⌉} = 1, whereas cub(G) = ⌈log n⌉, which is far higher. (We have noted that the cubicity of a star with
n + 1 vertices is ⌈log n⌉ [7], and identifying the endpoint of a path with a leaf of the star does not increase its cubicity.)

In this paper we ask a simpler question: let M̄ = max(box(G), ⌈logα(G)⌉). Lemma 2 tells us that cub(G) ∈ O(M̄2), and
the remark after the lemma indicates that we cannot have anything better in general (choosing α = 2b there illustrates
the point). Can we show that cub(G) ∈ O(M̄) for some restricted graph classes? In this paper we show that if we restrict
ourselves to classes of graphs whose chromatic number is bounded above by a constant, then such a result can indeed be
proved. Our main theorem is a general upper bound for cubicity in terms of boxicity, the independence number, and the
chromatic number:

Theorem 3. If G is a graphwith chromatic number χ(G) and independence number α(G), then cub(G) ≤ 2 ⌈logχ(G)⌉ box(G)+
χ(G) ⌈logα(G)⌉.

The proof of Theorem 3 is in Section 2. For graphs of low chromatic number, this result can be in general far better than
that of Adiga et al. [3]. The most interesting case is that of bipartite graphs:

Corollary 4. For a bipartite graph G, cub(G) ≤ 2(box(G) + ⌈logα(G)⌉).

Remark. The readermaywonderwhether the chromatic number is an upper bound for the boxicity of a graph, inwhich case
Theorem 3 cannot be an improvement over Lemma 2. In fact, most graphswith fixed chromatic number have larger boxicity.
In [2] it is shown that almost all balanced bipartite graphs (on 2n vertices) have boxicity Ω(n). The proof can be modified to
show that almost all bipartite graphs with n vertices on one side and m vertices on the other have boxicity Ω(min(n,m)).
Using the ideas from [2], it can be proved without much difficulty that, for any fixed k, boxicity is much greater than k for
almost all balanced k-partite graphs. It also follows from [2] and [4] that almost all graphs have boxicity much larger than
their chromatic number.

1.1. Preliminaries

A graph G is a co-bipartite graph if its complement G is a bipartite graph. Thus G is a co-bipartite graph if and only if the
vertex set V (G) can be partitioned into two cliques A and B. It is clear that α(G) ≤ 2 when G is co-bipartite. Lemma 2 yields
the following lemma.
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