Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note Upper bound on cubicity in terms of boxicity for graphs of low chromatic number

L. Sunil Chandran^a, Rogers Mathew^b, Deepak Rajendraprasad^{c,*}

^a Department of Computer Science and Automation, Indian Institute of Science, Bangalore, 560012, India

^b Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, 721302, India

^c The Caesarea Rothschild Institute, Department of Computer Science, University of Haifa, 31095, Haifa, Israel

ARTICLE INFO

Article history: Received 23 May 2014 Received in revised form 4 September 2015 Accepted 7 September 2015 Available online 1 October 2015

Keywords: Boxicity Cubicity Chromatic number

ABSTRACT

The *boxicity* (respectively *cubicity*) of a graph *G* is the least integer *k* such that *G* can be represented as an intersection graph of axis-parallel *k*-dimensional boxes (respectively *k*-dimensional unit cubes) and is denoted by box(*G*) (respectively cub(*G*)). It was shown by Adiga and Chandran (2010) that for any graph *G*, cub(*G*) \leq box(*G*) $\lceil \log_2 \alpha(G) \rceil$, where $\alpha(G)$ is the maximum size of an independent set in *G*. In this note we show that cub(*G*) $\leq 2 \lceil \log_2 \chi(G) \rceil$ box(*G*) + $\chi(G) \lceil \log_2 \alpha(G) \rceil$, where $\chi(G)$ is the chromatic number of *G*. This result can provide a much better upper bound than that of Adiga and Chandran for graph classes with bounded chromatic number. For example, for bipartite graphs we obtain cub(*G*) $\leq 2(\text{box}(G) + \lceil \log_2 \alpha(G) \rceil)$.

Moreover, we show that for every positive integer k, there exist graphs with chromatic number k such that for every $\epsilon > 0$, the value given by our upper bound is at most $(1 + \epsilon)$ times their cubicity. Thus, our upper bound is almost tight.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A graph *G* is an *intersection graph* of sets from a family of sets \mathcal{F} , if there exists $f : V(G) \rightarrow \mathcal{F}$ such that $uv \in E(G) \Leftrightarrow f(u) \cap f(v) \neq \emptyset$. An *interval graph* is an intersection graph in which the set assigned to each vertex is a closed interval on the real line. In other words, an interval graph is an intersection graph of closed intervals on the real line. Similarly, a *unit interval graph* is an intersection graph of closed unit intervals on the real line. An *axis-parallel k-dimensional box*, abbreviated to *k-box*, is a Cartesian product of the form $R_1 \times \cdots \times R_k$, where each R_i is an interval of the form $[a_i, b_i]$ on the real line. A *k-cube* is a *k*-box such that each R_i is an interval of the form $[a_i, a_i + 1]$. Given a graph *G* that is an intersection graph of *k*-boxes (respectively *k*-cubes), we call a function *f* a *k-box representation* (respectively *k*-cube representation) of *G* if *f* is a function that maps the vertices of *G* to *k*-boxes (respectively *k*-cubes) such that for any two vertices $u, v \in V(G)$, it holds that $uv \in E(G)$ if and only if $f(u) \cap f(v) \neq \emptyset$. The *boxicity* (respectively *cubicity*) of a graph *G*, denoted by box(*G*) (respectively cub(*G*)), is the minimum non-negative integer *k* such that *G* has a *k*-box representation (respectively *k*-cube representation). Only complete graphs have boxicity (cubicity) 0. The class of graphs with boxicity at most 1 is the class of interval graphs, and the class of graphs with cubicity at most 1 is the class of unit interval graphs. When H_1 and H_2 are graphs such that $V(H_1) = V(H_2) = V(G)$ and $E(G) = E(H_1) \cap E(H_2)$, we write $G = H_1 \cap H_2$. The following observation was made by F.S. Roberts [7].

http://dx.doi.org/10.1016/j.disc.2015.09.007 0012-365X/© 2015 Elsevier B.V. All rights reserved.

^{*} Corresponding author. E-mail addresses: sunil@csa.iisc.ernet.in (L.S. Chandran), rogersmathew@gmail.com (R. Mathew), deepakmail@gmail.com (D. Rajendraprasad).

Lemma 1 ([7]). The boxicity of a non-complete graph G equals the least k such that there exist interval graphs I_1, \ldots, I_k such that $G = I_1 \cap \cdots \cap I_k$. The cubicity of a non-complete graph G equals the least k such that there exist unit interval graphs U_1, \ldots, U_k such that $G = U_1 \cap \cdots \cap U_k$.

In the rest of the paper, we shall use *n* to denote the number of vertices of the graph being discussed. Logarithms will be to the base 2, unless otherwise specified.

Clearly, for any graph *G*, $box(G) \le cub(G)$. This suggests the following question: does there exist a function *g* such that $cub(G) \le g(box(G))$? It is easy to see that the answer is negative: consider a star on n + 1 vertices. Its cubicity is $\lceil \log n \rceil \rceil \rceil$ whereas its boxicity is 1, since a star is an interval graph. Chandran and Mathew [5] showed that for any graph *G*, $cub(G) \le box(G) \lceil \log n \rceil$, where *n* is the number of vertices. Adiga and Chandran [3] improved this result by showing that *n* can be replaced by the size $\alpha(G)$ of a maximum independent set in *G*.

Lemma 2 ([3]). For any graph G, $\operatorname{cub}(G) \leq \operatorname{box}(G) \lceil \log \alpha(G) \rceil$.

Remark. We demonstrate next that the bound in the above lemma is tight, i.e., given any two integers *b* and α , where $b \ge 1$ and $\alpha \ge 2$, we show that there exists a graph *G* with box(G) = b, $\alpha(G) = \alpha$ and $cub(G) = b \lceil \log \alpha \rceil$. It was shown by Roberts in [7] that for *p*, $n_1, \ldots, n_p \ge 2$, the complete *p*-partite graph with n_i vertices in the *i*th part has boxicity *p* and cubicity $\sum_{i=1}^{p} \lceil \log n_i \rceil$. Therefore, when $b \ge 2$ the complete *b*-partite graph with α vertices in each part will serve our purpose. If b = 1, then a star with $\alpha + 1$ vertices has the desired properties, as mentioned above (see [7]).

In a loose sense, the two factors in the upper bound on $\operatorname{cub}(G)$ given in Lemma 2, namely $\lceil \log \alpha(G) \rceil$ and $\operatorname{box}(G)$, individually can make the cubicity of a graph high. Clearly $\operatorname{box}(G)$ is a lower bound for $\operatorname{cub}(G)$ since cubes are specialized boxes. The other term $\lceil \log \alpha(G) \rceil$ can make $\operatorname{cub}(G)$ high due to a geometric reason, captured in the so-called 'volume argument', which we reproduce here (also see [6]): let $\operatorname{cub}(G) = k$ and let *d* be the diameter of *G*. By considering the extreme intervals when a cube representation in *k* dimensions is projected in a fixed dimension, the projection in each dimension is contained in an interval of length d + 1. Hence the volume of a representation is at most $(d + 1)^k$. Also the volume is at least $\alpha(G)$, since it contains that many disjoint cubes. Hence, $\operatorname{cub}(G) \ge \lceil \log_{d+1} \alpha(G) \rceil$.

Thus $M = \max(box(G), \lceil \log_{d+1} \alpha(G) \rceil) \leq cub(G)$. It is natural to ask whether there exists a function g such that $cub(G) \leq g(M)$. The answer is no, since we can increase the diameter of a graph without bound without affecting its cubicity. For example, if G is the graph obtained by identifying one endpoint of a path on 2n + 1 vertices with the leaf of a star on n+1 vertices, it is easy to check that box(G) = 1, $\alpha(G) = 2n$, the diameter d of G equals 2n+2 and hence $M = max\{box(G), \lceil \log \alpha(G) / \log(d+1) \rceil\} = 1$, whereas $cub(G) = \lceil \log n \rceil$, which is far higher. (We have noted that the cubicity of a star with n + 1 vertices is $\lceil \log n \rceil \rceil$], and identifying the endpoint of a path with a leaf of the star does not increase its cubicity.)

In this paper we ask a simpler question: let $\overline{M} = \max(box(G), \lceil \log \alpha(G) \rceil)$. Lemma 2 tells us that $cub(G) \in O(\overline{M}^2)$, and the remark after the lemma indicates that we cannot have anything better in general (choosing $\alpha = 2^b$ there illustrates the point). Can we show that $cub(G) \in O(\overline{M})$ for some restricted graph classes? In this paper we show that if we restrict ourselves to classes of graphs whose chromatic number is bounded above by a constant, then such a result can indeed be proved. Our main theorem is a general upper bound for cubicity in terms of boxicity, the independence number, and the chromatic number:

Theorem 3. If *G* is a graph with chromatic number $\chi(G)$ and independence number $\alpha(G)$, then $\operatorname{cub}(G) \leq 2 \lceil \log \chi(G) \rceil \operatorname{box}(G) + \chi(G) \lceil \log \alpha(G) \rceil$.

The proof of Theorem 3 is in Section 2. For graphs of low chromatic number, this result can be in general far better than that of Adiga et al. [3]. The most interesting case is that of bipartite graphs:

Corollary 4. For a bipartite graph G, $\operatorname{cub}(G) \leq 2(\operatorname{box}(G) + \lceil \log \alpha(G) \rceil)$.

Remark. The reader may wonder whether the chromatic number is an upper bound for the boxicity of a graph, in which case Theorem 3 cannot be an improvement over Lemma 2. In fact, most graphs with fixed chromatic number have larger boxicity. In [2] it is shown that almost all balanced bipartite graphs (on 2n vertices) have boxicity $\Omega(n)$. The proof can be modified to show that almost all bipartite graphs with n vertices on one side and m vertices on the other have boxicity $\Omega(\min(n, m))$. Using the ideas from [2], it can be proved without much difficulty that, for any fixed k, boxicity is much greater than k for almost all balanced k-partite graphs. It also follows from [2] and [4] that almost all graphs have boxicity much larger than their chromatic number.

1.1. Preliminaries

A graph *G* is a co-bipartite graph if its complement \overline{G} is a bipartite graph. Thus *G* is a co-bipartite graph if and only if the vertex set *V*(*G*) can be partitioned into two cliques *A* and *B*. It is clear that $\alpha(G) \leq 2$ when *G* is co-bipartite. Lemma 2 yields the following lemma.

Download English Version:

https://daneshyari.com/en/article/4646637

Download Persian Version:

https://daneshyari.com/article/4646637

Daneshyari.com