The square chromatic number of the torus

A.G. Chegini ${ }^{\text {a }}$, Morteza Hasanvand ${ }^{\text {a }}$, E.S. Mahmoodian ${ }^{\text {a,* }}$, Farokhlagha Moazami ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Sharif University of Technology, P.O. Box 11155-9415, Tehran, Iran
${ }^{\mathrm{b}}$ Cyberspace Research Institute, Shahid Beheshti University, G.C., P.O. Box 1983963113 , Tehran, Iran

A R T I C L E INFO

Article history:

Received 28 January 2015
Received in revised form 1 September 2015
Accepted 2 September 2015
Available online 8 October 2015

Keywords:

2-distance colouring
Cartesian product
Torus

Abstract

The square of a graph G denoted by G^{2}, is the graph with the same vertex set as G and edges linking pairs of vertices at distance at most 2 in G. The chromatic number of the square of the Cartesian product of two cycles was previously determined for some cases. In this paper, we determine the precise value of $\chi\left(\left(C_{m} \square C_{n}\right)^{2}\right)$ for all the remaining cases. We show that for all ordered pairs (m, n) except for $(7,11)$ we have $\chi\left(\left(C_{m} \square C_{n}\right)^{2}\right)=\left\lceil\frac{\mid V\left(\left(C_{m} \square C_{n}\right)^{2} \mid\right.}{\alpha\left(\left(C_{m} \square C_{n}\right)^{2}\right)}\right\rceil$, where $\alpha(G)$ denotes the independent number of G. This settles a conjecture of Sopena and $\mathrm{Wu}(2010)$. We also show that the smallest integer k such that $\chi\left(\left(C_{m} \square C_{n}\right)^{2}\right) \leq 6$ for every $m, n \geq k$ is 10 . This answers a question of Shao and Vesel (2013).

© 2015 Published by Elsevier B.V.

1. Introduction

A k-distance colouring of a graph is a colouring of its vertices such that any two vertices at distance at most k receive distinct colours. By the k th power of a graph G denoted by G^{k}, we mean the graph with the same set of vertices in which two vertices are adjacent when their distance in G is at most k. For a given graph G, it is of interest to find $\chi_{k}(G)$, the minimum number of colours necessary to have a k-distance colouring of G. Note that $\chi_{k}(G)=\chi\left(G^{k}\right)$, where χ stands for the ordinary chromatic number. The k-distance colouring of a graph was defined by Florica Kramer and Horst Kramer in 1969 [5,6] and has been studied extensively throughout the literature, for a survey see [7]. The Cartesian product of two graphs G and H, denoted by $G \square H$, is a graph with vertex set $V(G) \times V(H)$ where two vertices $\left(u, u^{\prime}\right)$ and $\left(v, v^{\prime}\right)$ are adjacent when either $u=v$ and u^{\prime} is adjacent with v^{\prime} in H, or $u^{\prime}=v^{\prime}$ and u is adjacent with v in G. For $u \in V(H)$ let $G_{u}=G \square\{u\}$ and for $v \in V(G)$ let $H_{v}=\{v\} \square H$. We call G_{u} the u th column and H_{v} the v th row of $G \square H$. For convenience let $T_{m, n}$ stand for $C_{m} \square C_{n}$, and let $\alpha(G)$ stand for the size of an independent set in G with maximum cardinality. It is clear that for every graph G

$$
\begin{equation*}
\chi(G) \geq \frac{|V(G)|}{\alpha(G)} . \tag{1}
\end{equation*}
$$

Sopena and $\mathrm{Wu}[10]$ proposed the following conjectures.
Conjecture 1 ([10]). If $m, n \geq 3$, then $\chi\left(T_{m, n}^{2}\right)=\left\lceil\frac{\left|V\left(T_{m, n}^{2}\right)\right|}{\alpha\left(T_{m, n}^{2}\right)}\right\rceil$.
Conjecture 2 ([10]). There exists some constant c such that if $m, n \geq c$, then $\chi\left(T_{m, n}^{2}\right) \leq 6$.
B.M. Kim, et al. in [4] have worked on the conjecture above, while Shao and Vesel [9] discovered a colouring showing that Conjecture 2 holds for $c=40$. More formally, they proved the following theorem.

[^0]Theorem A ([9]). If $m, n \geq 40$, then $\chi\left(T_{m, n}^{2}\right) \leq 6$.
Also, Shao and Vesel [9] proposed the following question.
Question 1 ([9]). What is the smallest c such that if $m, n \geq c$, then $\chi\left(T_{m, n}^{2}\right) \leq 6$?
Jamison and Matthews [2], Mahmoodian and Mousavi [8], also Sopena and Wu [10] independently proved the following theorem.

Theorem B. For all m and $n, \chi\left(T_{m, n}^{2}\right)=5$ if and only if both m and n are multiple of 5 .
The exact values of $\chi\left(T_{m, n}^{2}\right)$ are determined in some papers for infinitely many other cases of (m, n), see [3,8-10]. Here we find $\chi\left(T_{m, n}^{2}\right)$ for all remaining cases which were not known. Also we show that Conjecture 1 holds for all m and n except when $(m, n)=(7,11)$ and also we show that the optimal value of c in Question 1 is 10 .

The number c in Question 1 is equal to 10.

2. General results

We state a theorem from [3] which is a generalization of Theorem B. They state this theorem with different mathematical language and notation. An important corollary of this theorem will be used to prove Conjecture 1 . We give a proof for one side of this theorem which can be instrumental in the proof of its corollary.

Theorem C ([3]). Let $G=C_{n_{1}} \square C_{n_{2}} \square \cdots \square C_{n_{k}}$. Then $\chi\left(G^{2}\right)=2 k+1$ if and only if $\frac{\left|V\left(G^{2}\right)\right|}{\alpha\left(G^{2}\right)}=2 k+1$.
Proof. (\Longrightarrow) Let $V\left(G^{2}\right)=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}\right) \mid 0 \leq x_{i} \leq n_{i}-1\right\}$. Assume that A_{0} is an arbitrary independent set of G^{2}. Let $e_{+i}=(0, \ldots, 0,1,0, \ldots, 0)$ and $e_{-i}=(0, \ldots, 0,-1,0, \ldots, 0)$, where for each $i, 1 \leq i \leq k$, the i th coordinate is equal to +1 or -1 . For each $x \in A_{0}$ let $A_{x}=\{x\} \cup\left\{x+e_{ \pm i} \mid 1 \leq i \leq k\right\}$, where addition is taken modulo n_{i}. Now let $\mathcal{A}=\cup_{x \in A_{0}} A_{x}$. \mathcal{A} is a collection of pairwise disjoint sets each of size $2 k+1$. Therefore, $(2 k+1) \alpha\left(G^{2}\right) \leq\left|V\left(G^{2}\right)\right|$. So

$$
\begin{equation*}
\chi\left(G^{2}\right) \geq \frac{\left|V\left(G^{2}\right)\right|}{\alpha\left(G^{2}\right)} \geq 2 k+1 \tag{2}
\end{equation*}
$$

By the hypothesis $\chi\left(G^{2}\right)=2 k+1$, hence $\frac{\left|V\left(G^{2}\right)\right|}{\alpha\left(G^{2}\right)}=2 k+1$.
For (\Longleftarrow) see [3].
Corollary 1. Let $G=C_{n_{1}} \square C_{n_{2}} \square \cdots \square C_{n_{k}}$, if $\chi\left(G^{2}\right) \leq 2 k+2$ then $\left\lceil\frac{\left|V\left(G^{2}\right)\right|}{\alpha\left(G^{2}\right)}\right\rceil=\chi\left(G^{2}\right)$.
Proof. If $\chi\left(G^{2}\right)=2 k+1$ then the statement follows from Theorem C. If $\chi\left(G^{2}\right)=2 k+2$ then by (1) $2 k+2=\chi\left(G^{2}\right) \geq \frac{\left|V\left(G^{2}\right)\right|}{\alpha\left(G^{2}\right)}$ and by (2) and Theorem C, we have $\frac{\left|V\left(G^{2}\right)\right|}{\alpha\left(G^{2}\right)}>2 k+1$.
Let x and y be two integers, and

$$
S(x, y)=\{\alpha x+\beta y \mid \alpha, \beta \text { are nonnegative integers }\}
$$

Sylvester has shown the following lemma.
Lemma $\mathbf{A}([1,11])$. Let x and y be relatively prime integers greater than 1 . Then $n \in S(x, y)$ for all $n \geq(x-1)(y-1)$.
By applying Sylvester's Lemma, one can observe that

$$
S(5,6)=\mathbb{N} \backslash\{1,2,3,4,7,8,9,13,14,19\}
$$

Theorem 1. If $m, n \in S(5,6)$, then $\chi\left(T_{m, n}^{2}\right) \leq 6$.
Proof. The following patterns are proper 6-colourings of $T_{5,5}^{2}, T_{5,6}^{2}, T_{6,5}^{2}$, and $T_{6,6}^{2}$, respectively.

https://daneshyari.com/en/article/4646638

Download Persian Version:
https://daneshyari.com/article/4646638

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: goodarzvand@ee.sharif.edu (A.G. Chegini), hasanvand@alum.sharif.edu (M. Hasanvand), emahmood@sharif.edu (E.S. Mahmoodian), f_moazemi@sbu.ac.ir (F. Moazami).

