Note

Catalan-like numbers and Stieltjes moment sequences ${ }^{\star}$

CrossMark

Huyile Liang, Lili Mu, Yi Wang*
School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, PR China

ARTICLE INFO

Article history:

Received 15 January 2015
Received in revised form 10 September 2015
Accepted 15 September 2015
Available online 18 October 2015

Keywords:

Stieltjes moment sequence
Catalan-like number
Recursive matrix
Riordan array
Hankel matrix
Totally positive matrix

Abstract

We provide sufficient conditions under which the Catalan-like numbers are Stieltjes moment sequences. As applications, we show that many well-known counting coefficients, including the Bell numbers, the Catalan numbers, the central binomial coefficients, the central Delannoy numbers, the factorial numbers, the large and little Schröder numbers, are Stieltjes moment sequences in a unified approach.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A sequence $\left(m_{n}\right)_{n \geq 0}$ of numbers is said to be a Stieltjes moment sequence if it has the form

$$
\begin{equation*}
m_{n}=\int_{0}^{+\infty} x^{n} d \mu(x) \tag{1}
\end{equation*}
$$

where μ is a non-negative measure on $[0,+\infty)$. It is well known that $\left(m_{n}\right)_{n \geq 0}$ is a Stieltjes moment sequence if and only if both $\operatorname{det}\left[m_{i+j}\right]_{0 \leq i, j \leq n} \geq 0$ and $\operatorname{det}\left[m_{i+j+1}\right]_{0 \leq i, j \leq n} \geq 0$ for all $n \geq 0$ [9, Theorem 1.3]. Another characterization for Stieltjes moment sequences comes from the theory of total positivity.

Let $A=\left[a_{n, k}\right]_{n, k \geq 0}$ be a finite or an infinite matrix. It is totally positive (TP for short), if its minors of all orders are nonnegative. Let $\alpha=\left(a_{n}\right)_{n \geq 0}$ be an infinite sequence of nonnegative numbers. Define the Hankel matrix $H(\alpha)$ of the sequence α by

$$
H(\alpha)=\left[a_{i+j}\right]_{i, j \geq 0}=\left[\begin{array}{lllll}
a_{0} & a_{1} & a_{2} & a_{3} & \cdots \\
a_{1} & a_{2} & a_{3} & a_{4} & \cdots \\
a_{2} & a_{3} & a_{4} & a_{5} & \cdots \\
a_{3} & a_{4} & a_{5} & a_{6} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Then α is a Stieltjes moment sequence if and only if $H(\alpha)$ is totally positive (see [7, Theorem 4.4] for instance).

[^0]Many counting coefficients are Stieltjes moment sequences. For example, the factorial numbers n ! form a Stieltjes moment sequence since

$$
\begin{equation*}
n!=\int_{0}^{\infty} x^{n} e^{-x} d x \tag{2}
\end{equation*}
$$

The Bell numbers B_{n} form a Stieltjes moment sequence since B_{n} can be interpreted as the nth moment of a Poisson distribution with expected value 1 by Dobinski's formula

$$
B_{n}=\frac{1}{e} \sum_{k \geq 0} \frac{k^{n}}{k!}
$$

The Catalan numbers $C_{n}=\binom{2 n}{n} /(n+1)$ form a Stieltjes moment sequence since

$$
\operatorname{det}\left[C_{i+j}\right]_{0 \leq i, j \leq n}=\operatorname{det}\left[C_{i+j+1}\right]_{0 \leq i, j \leq n}=1, \quad n=0,1,2, \ldots
$$

(see Aigner [1] for instance). Bennett [3] showed that the central Delannoy numbers D_{n} and the little Schröder numbers S_{n} form Stieltjes moment sequences by means of their generating functions (see Remark 2.11 and Example 2.12). All these counting coefficients are the so-called Catalan-like numbers. In this note we provide sufficient conditions such that the Catalan-like numbers are Stieltjes moment sequences by the total positivity of the associated Hankel matrices. As applications, we show that the Bell numbers, the Catalan numbers, the central binomial coefficients, the central Delannoy numbers, the factorial numbers, the large and little Schröder numbers are Stieltjes moment sequences in a unified approach.

2. Main results and applications

Let $\sigma=\left(s_{k}\right)_{k \geq 0}$ and $\tau=\left(t_{k}\right)_{k \geq 1}$ be two sequences of nonnegative numbers and define an infinite lower triangular matrix $R:=R^{\sigma, \tau}=\left[r_{n, k}\right]_{n, k \geq 0}$ by the recurrence

$$
\begin{equation*}
r_{0,0}=1, \quad r_{n+1, k}=r_{n, k-1}+s_{k} r_{n, k}+t_{k+1} r_{n, k+1} \tag{3}
\end{equation*}
$$

where $r_{n, k}=0$ unless $n \geq k \geq 0$. Following Aigner [2], we say that $R^{\sigma, \tau}$ is the recursive matrix and $r_{n, 0}$ are the Catalan-like numbers corresponding to (σ, τ).

The Catalan-like numbers unify many well-known counting coefficients, such as
(1) the Catalan numbers C_{n} if $\sigma=(1,2,2, \ldots)$ and $\tau=(1,1,1, \ldots)$;
(2) the central binomial coefficients $\binom{2 n}{n}$ if $\sigma=(2,2,2, \ldots)$ and $\tau=(2,1,1, \ldots)$;
(3) the central Delannoy numbers D_{n} if $\sigma=(3,3,3, \ldots)$ and $\tau=(4,2,2, \ldots)$;
(4) the large Schröder numbers r_{n} if $\sigma=(2,3,3 \ldots)$ and $\tau=(2,2,2 \ldots)$;
(5) the little Schröder numbers S_{n} if $\sigma=(1,3,3 \ldots)$ and $\tau=(2,2,2 \ldots)$;
(6) the (restricted) hexagonal numbers h_{n} if $\sigma=(3,3,3 \ldots)$ and $\tau=(1,1,1, \ldots)$;
(7) the Bell numbers B_{n} if $\sigma=\tau=(1,2,3,4, \ldots)$;
(8) the factorial numbers n ! if $\sigma=(1,3,5,7, \ldots)$ and $\tau=(1,4,9,16, \ldots)$.

Rewrite the recursive relation (3) as

$$
\left[\begin{array}{lllll}
r_{1,0} & r_{1,1} & & & \\
r_{2,0} & r_{2,1} & r_{2,2} & & \\
r_{3,0} & r_{3,1} & r_{3,2} & r_{3,3} & \\
& & \ldots & & \ddots
\end{array}\right]=\left[\begin{array}{llll}
r_{0,0} & & & \\
r_{1,0} & r_{1,1} & & \\
r_{2,0} & r_{2,1} & r_{2,2} & \\
& \ldots & & \ddots
\end{array}\right]\left[\begin{array}{cccc}
s_{0} & 1 & & \\
t_{1} & s_{1} & 1 & \\
& & t_{2} & s_{2} \\
& \ddots \\
& & \ddots & \ddots .
\end{array}\right]
$$

or briefly,

$$
\bar{R}=R J
$$

where \bar{R} is obtained from R by deleting the 0 th row and J is the tridiagonal matrix

$$
J:=J^{\sigma, \tau}=\left[\begin{array}{ccccc}
s_{0} & 1 & & & \\
t_{1} & s_{1} & 1 & & \\
& t_{2} & s_{2} & 1 & \\
& & t_{3} & s_{3} & \ddots \\
& & & \ddots & \ddots
\end{array}\right]
$$

Clearly, the recursive relation (3) is decided completely by the tridiagonal matrix J. Call J the coefficient matrix of the recursive relation (3).

https://daneshyari.com/en/article/4646643

Download Persian Version:
https://daneshyari.com/article/4646643

Daneshyari.com

[^0]: the This work was supported in part by the National Natural Science Foundation of China (Grant No. 11371078) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110041110039).

 * Corresponding author.

 E-mail addresses: lianghuyile@hotmail.com (H. Liang), lly-mu@hotmail.com (L. Mu), wangyi@dlut.edu.cn (Y. Wang).

