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a b s t r a c t

Let Rn be a square–hexagonal chain. In this paper, we show that there exists a caterpillar
tree Tn such that the number of Kekulé structures of Rn is equal to the Hosoya index
of Tn. Since both hexagonal chains and polyomino chains can be viewed as special
square–hexagonal chains, our result generalizes the corresponding results for hexagonal
chains (Gutman, 1977) and polyomino chains (Liand Yan, 2012).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be a molecule graph. Denote by m(G, k) the number of ways in which k mutually independent edges can
be selected in G, setm(G, 0) = 1 by convention. Thusm(G, 1) is equal to the number of edges of G. If n is even, thenm(G, n

2 )
is the number of Kekulé structures (or perfect matchings) of G and will be denoted byM(G). The number of matchings of G is
called the Hosoya index [7] and will be denoted by Z(G). That is

Z(G) = m(G, 0) + m(G, 1) + · · · + m

G,

n
2


.

By a square–hexagonal chain Rn, we mean a finite graph obtained by concatenating n cells (where each cell can be either
a square or a hexagon) in such a way that any two adjacent cells have exactly one edge in common, and each cell is adjacent
to exactly two other cells, except the first and last cells (end cells) which are adjacent to exactly one other cell each (see
an illustration example with ten cells in Fig. 1(a)). It is clear that different square–hexagonal chains will result, not only
according to themanner in which the cells are concatenated, but also the cell’s type. For example, we have hexagonal chains
if all the cells are hexagons, and we have polyomino chains if all the cells are squares. Similarly, we have phenylene chains
if hexagons and squares are concatenated alternately.

In 1977 Gutman [4] discovered a curious relation between the sextet polynomial of a hexagonal chain and the matching
polynomial of a caterpillar tree (so this tree is also named as Gutman tree by some researchers, see [1,2] for example). This
result implied that, for a hexagonal chain H , there exists a corresponding caterpillar tree T such that the number of Kekulé
structures of H is equal to the Hosoya index of T . Some related results see for example [5,8,11]. More recently, Li and Yan
in [9] proved a similar result for polyomino chains. In this paper, we will show that, for a general square–hexagonal chain
Rn, there exists a corresponding caterpillar tree Tn such that the number of Kekulé structures of Rn is equal to the Hosoya
index of Tn. So our result includes Gutman, Li and Yan’s results mentioned above as special cases.

∗ Corresponding author.
E-mail addresses: chuanqixm@163.com (C. Xiao), chey5@jmu.edu.cn (H. Chen).

http://dx.doi.org/10.1016/j.disc.2015.09.018
0012-365X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.disc.2015.09.018
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2015.09.018&domain=pdf
mailto:chuanqixm@163.com
mailto:chey5@jmu.edu.cn
http://dx.doi.org/10.1016/j.disc.2015.09.018


C. Xiao, H. Chen / Discrete Mathematics 339 (2016) 506–510 507

a

b

Fig. 1. (a) A square–hexagonal chain Rn with 10 cells. (b) The LA-sequence of Rn is LLLAAALLLA.

a b c d

Fig. 2. Concatenation modes of cells that occur in square–hexagonal chains.

Fig. 3. The recursive construction of tree T10 corresponding to R10 in Fig. 1.

As in [4] and [9], we will prove our result by first constructing a caterpillar tree Tn explicitly for any given square–
hexagonal chain Rn, then showing that M(Rn) = Z(Tn). But the constructing method that we give below is recursive, while
none of the constructions in [4] and [9] is. We will explain more clearly in the remarks.

Now for a square–hexagonal chain Rn with n cells c1, c2, . . . , cn, where the cells are numbered successively. That is, the
cell ci (1 < i < n) is neighbouring to the cells ci−1 and ci+1. Then it is easy to see that a cell in Rn with exactly two neighbours
is concatenated in one of the four modes: a, b, c, d (see Fig. 2). We define a function f from the cells to the symbols L and A
as follows:

f (ci) =

L, i = 1, 2;
L, if i ≥ 3 and the concatenating mode of ci−1 is ‘‘a’’ or ‘‘d’’;
A, otherwise.

Thus a unique LA-sequence f (c1)f (c2) · · · f (cn) is associated with Rn (see Fig. 1(b) for an example). Note that if let
Ri (1 ≤ i ≤ n) denote the subchain of Rn with the first i cells, then the corresponding LA-sequence of Ri is just the
subsequence f (c1)f (c2) · · · f (ci). So we can construct a caterpillar tree Tn corresponding to Rn recursively as follows.

First let T1 = P2 with two vertices labelled by v1 and v′

1 respectively (see Fig. 3). Now suppose we have constructed
Ti corresponding to Ri, then Ti+1 is obtained from Ti by attaching a new edge ei+1 to the vertex v′

i or vi of Ti according to
f (ci+1) = L or A. At the same time, the labelling of the attaching vertex is changed to vi+1, the other end vertex of ei+1 is
labelled as v′

i+1. The caterpillar tree corresponding to the square–hexagonal chain in Fig. 1 is shown in Fig. 3.
In the next section, we shall show that the number of Kekulé structures of Rn is equal to the Hosoya index of Tn.
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