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1. Introduction

We denote an undirected connected graph G by a pair (V(G), E(G)), where V(G) and E (G) represent the vertex and edge
sets of G, respectively. Loops and multiple edges are permitted. Let G be a graph, and let X € V(G). We use 9X to denote the
set of edges with one end in X and the other in V(G)\X. A cut in G is any set of the form 0X for some X C V(G). The graphs
G[X] and G[V (G)\X] are the sides of the cut dX. If |X| = 1, then the cut 9X is trivial.

For F C E(G) and v € V(G), we denote by dr(v) the number of incidences of edges in F with v. Let T be an even subset
of V(G). A T-cut is a set of the form dX for some subset X of V(G) such that |[X N T| is odd. A T-join is a subset F of E(G)
such that T = {v € V(G) : dr(v) is odd}. Since G is connected and |T| is even, a T-join necessarily exists. If |T| = 2, then a
minimum T-join is a path of minimum length joining the vertices of T. (We identify paths and circuits with their edge sets.)
If T = V(G) and G has a perfect matching, then any perfect matching is a minimum T-join.

Let v(G, T) denote the maximum number of disjoint T-cuts, and let 7 (G, T) denote the minimum size of a T-join in G. It
is easy to see that each T-join has at least one edge in common with each T-cut. Therefore,

v(G, T) < 1(G,T). (n

In general, we do not have equality in (1): G = K4 and T = V(Ky) is a counterexample. However, Seymour showed that
bipartite [ 13] and series—parallel [ 12] graphs satisfy (1) with equality for every even subset T of the vertex set of G.

Motivated by these results, we call a graph G a Seymour graph if (1) holds with equality for all even subsets T C V (G).
Ageev, Kostochka, and Szigeti [ 1] presented a characterization of Seymour graphs in 1997. Their result is stated in terms of
conservative functions and implies Seymour’s results.
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Fig. 1. A non-minimal non-Seymour graph, with negative edges bold.

A weight function w : E(G) — {1, —1} defined on the edges of G is conservative if the sum of the edge weights along
any circuit is non-negative. For example, a matching in a graph defines a conservative function if we assign —1 to the edges
of the matching and 1 to the remaining edges. A conservatively-weighted graph is an ordered pair (G, w) such that G is a
nonempty connected graph with no isthmuses and w is a conservative weight function on E(G). For convenience, we refer
to (G, w) as a conservative graph. An edge e is negative if w(e) = —1; otherwise it is positive. Analogously, we define negative
and positive sets of edges by considering the weight of a set of edges to be the sum of the weights of its members. The set
of negative edges is denoted by E~(G). If C € E(G) and w(C) = 0, then C is said to be zero-weight.

Let (G, w) be a conservative graph. If every edge of G lies in a zero-weight circuit then (G, w) is join-covered. Clearly,
join-covered graphs have no loops.

Let (G, w) be a conservative graph. The distance (generated by w) between vertices x and y is given by the minimum
weight (also called the w-minimum weight) of an x, y-path. We denote the distance between x and y by d,, (x, y). In cases
where there is no ambiguity we use the simpler notation d(x, y). A minimum-weight path is a path whose weight is the
minimum among all paths joining the same pair of vertices. Because weights may be negative, subpaths of minimum-weight
paths are not necessarily minimum-weight.

Let C be a zero-weight circuit in a conservative graph (G, w). The weight function obtained from w by switching the signs
on the edges of C is said to be obtained by rotation about C. In the case of a graph with a perfect matching M which is the set
of negative edges, the zero-weight circuits are the alternating circuits with respect to M. Rotation about such an alternating
circuit C results in a weighting where the negative edges are those that belong to the perfect matching M & C (the symmetric
difference of M and C). The following lemma says that rotation about a zero-weight circuit results in a conservative graph
with the same distance function.

Lemma 1.1 ([4]). Let (G, w) be a conservative graph and C a zero-weight circuit of G. Let w’ be the weight function obtained
from w by rotation about C. Then w' is also conservative and d, (x, y) = d,, (%, y), forallx, y € V(G).

The result above naturally suggests the following definition: a weight function w’ is equivalent to w if it is obtained from
w by a sequence of rotations about zero-weight circuits. If w’ is equivalent to w then, by Lemma 1.1, w’ is conservative and
dy(x,y) =dy(x,y), forallx,y € V(G).

A subgraph H of a join-covered graph (G, w) is conformal if there exists w’ equivalent to w such that (H, wy,) is a join-
covered graph, where wy, denotes the restriction of w’ to E(H). In the case of a matching-covered graph G, a conformal
subgraph H is a matching-covered subgraph such that G—V (H) has a perfect matching. The conformal property is transitive,
that is, if H is a conformal subgraph of G and K is a conformal subgraph of H, then K is also a conformal subgraph of G.

A join-covered graph not induced by a circuit is minimal with respect to some specified property if any proper conformal
subgraph with that property is induced by a circuit.

The following result is the characterization of Seymour graphs by Ageev et al.

Theorem 1.2 ([1]). A graph G is non-Seymour if and only if for some conservative weight function there exist zero-weight circuits
C; and G, such that the graph G[C; U C,] is nonbipartite.

Not every graph satisfying the property stated in Theorem 1.2 is minimal. The graph of Fig. 1 is non-Seymour but it is not
minimal, since removal of edges e and f results in a non-Seymour graph.

In this paper, we use Theorem 1.2 to characterize minimal non-Seymour graphs. More precisely, we show that minimal
non-Seymour graphs can be completely described by two infinite families of graphs, and we provide a procedure to
construct them. These two families are in fact minimal nonbipartite join-covered graphs. This fact is used to show that
our characterization also generalizes a theorem of Lovasz related to minimal nonbipartite matching-covered graphs.

In Section 2, we present the basic properties of conservative graphs. Section 3 is dedicated to the study of join-covered
graphs and contains the most important tools used to prove the main result of this paper. Minimal bipartite join-covered
graphs have been characterized in [3], but we present in Section 4 a slightly stronger version of that characterization which
will be useful for the main result. In Section 5, we characterize minimal 2-connected nonbipartite join-covered graphs, a
result that generalizes Lovasz's characterization of minimal nonbipartite matching-covered graphs [5] (see also [7]). Finally,
in Section 6 we use this result together with Theorem 1.2 to characterize minimal non-Seymour graphs.
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