Double covers of symplectic dual polar graphs

G. Eric Moorhouse*, Jason Williford
Department of Mathematics, University of Wyoming, Laramie, WY 82071, USA

ARTICLE INFO

Article history:

Received 4 April 2015
Received in revised form 21 September 2015
Accepted 24 September 2015
Available online 11 November 2015

Keywords:

Association scheme
Q-polynomial
Symplectic group
Two-graph
Dual polar graph

Abstract

Let $\Gamma=\Gamma(2 n, q)$ be the dual polar graph of type $\operatorname{Sp}(2 n, q)$. Underlying this graph is a $2 n$-dimensional vector space V over a field \mathbb{F}_{q} of odd order q, together with a symplectic (i.e. nondegenerate alternating bilinear) form $B: V \times V \rightarrow \mathbb{F}_{q}$. The vertex set of Γ is the set \mathcal{V} of all n-dimensional totally isotropic subspaces of V. If $q \equiv 1 \bmod 4$, we obtain from Γ a nontrivial two-graph $\Delta=\Delta(2 n, q)$ on \mathcal{V} invariant under $\operatorname{PSp}(2 n, q)$. This twograph corresponds to a double cover $\widehat{\Gamma} \rightarrow \Gamma$ on which is naturally defined a Q-polynomial $(2 n+1)$-class association scheme on $2|\widehat{v}|$ vertices.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Association schemes [2,6] were first defined by Bose and Mesner [3] in the context of the design of experiments. Philippe Delsarte used association schemes to unify the study of coding theory and design theory in his thesis [8], where he derived his well-known linear programming bound which has since found many applications in combinatorics. There he identified two types of association schemes which were of particular interest: the so-called P-polynomial and Q-polynomial schemes. Schemes which are P-polynomial are precisely those arising from distance-regular graphs, and are well studied. In particular, much effort has gone into the classification of distance-transitive graphs, the P-polynomial schemes which are the orbitals of a permutation group; and it is likely that all such examples are known. Also well-studied are the schemes which are both Q-polynomial and P-polynomial. A well-known conjecture [2, p. 312] of Bannai and Ito is the following: for sufficiently large d, a primitive scheme is P-polynomial if and only if it is Q-polynomial.

Classification efforts for Q-polynomial schemes are far less advanced than in the P-polynomial case; in particular it is likely that more examples from permutation groups are yet to be found. The Q-polynomial property has no known combinatorial characterization, making their study more difficult. However, the list of known examples (see [12,14,19]) indicates that these objects have interesting structure from the viewpoint of designs, lattices, coding theory and finite geometry.

In this paper, we give a new family of imprimitive Q-polynomial schemes with an unbounded number of classes. These schemes are formed by the orbitals of a group, giving a double cover of the scheme arising from the symplectic dual polar space graph. We note that only one other family of imprimitive Q-polynomial schemes with an unbounded number of classes is known that is not P-polynomial, namely the bipartite doubles of the Hermitian dual polar space graphs, which are Q-bipartite and Q-antipodal. The schemes in this paper are Q-bipartite, and have two Q-polynomial orderings. Except when the field order q is a square, the splitting field of these schemes is also irrational. We note that this is the only known

[^0]family of Q-polynomial schemes with unbounded number of classes and an irrational splitting field. In the last section we give open parameters for hypothetical primitive Q-polynomial subschemes of this family.

Our paper is organized as follows: Background material on Gaussian coefficients, two-graphs and double covers of graphs, are covered in Sections 2-3. In Section 4 we recall the standard construction of the symplectic dual polar graph $\Gamma=\Gamma(2 n, q)$. There we also introduce the Maslov index, which we use in Section 5 to construct the double cover $\widehat{\Gamma} \rightarrow \Gamma$ when $q \equiv 1 \bmod 4$. In Section 6 we construct a $(2 n+1)$-class association scheme $s=\ell_{n, q}$ from $\widehat{\Gamma}$; and in Section 7 we show that s is Q-polynomial. The P-matrix of the scheme is constructed in Section 8 . A particularly tantalizing open problem is the question whether $\&$ is in general the extended Q-bipartite double of a primitive Q-polynomial scheme; see Section 9 .

2. Gaussian coefficients

For all integers n, k we define the Gaussian coefficient

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}= \begin{cases}\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right) \cdots\left(q^{n-k+1}-1\right)}{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \cdots(q-1)}, & \text { if } k \geqslant 0 \\
0, & \text { if } k<0\end{cases}
$$

In particular for $k=0$ the empty product gives $\left[\begin{array}{l}n \\ 0\end{array}\right]=1$. In later sections, q will be a fixed prime power; but here we may regard q as an indeterminate, so that for $n \geqslant 0$, after canceling factors we find $\left[\begin{array}{l}n \\ k\end{array}\right] \in \mathbb{Z}[q]$; and specializing to $q=1$ gives the ordinary binomial coefficients $\left[\begin{array}{l}n \\ k\end{array}\right]_{1}=\binom{n}{k}$. For general $n \in \mathbb{Z}$ we instead obtain a Laurent polynomial in q with integer coefficients, i.e. $\left[\begin{array}{l}n \\ k\end{array}\right] \in \mathbb{Z}\left[q, q^{-1}\right]$, as follows from conclusion (ii) of the following.

Proposition 2.1. Let $n, k, \ell \in \mathbb{Z}$. The Gaussian coefficients satisfy
(i) $\left[\begin{array}{l}n \\ k\end{array}\right]=q^{k}\left[\begin{array}{c}n-1 \\ k\end{array}\right]+\left[\begin{array}{c}n-1 \\ k-1\end{array}\right]=\left[\begin{array}{c}n-1 \\ k\end{array}\right]+q^{n-k}\left[\begin{array}{l}n-1 \\ k-1\end{array}\right]$;
(ii) $\left[\begin{array}{c}-n \\ k\end{array}\right]=\left(-q^{-n}\right)^{k}\left[\begin{array}{c}n+k-1 \\ k\end{array}\right]$;
(iii) $\left[\begin{array}{l}n \\ k\end{array}\right]\left[\begin{array}{l}k \\ \ell\end{array}\right]=\left[\begin{array}{l}n \\ \ell\end{array}\right]\left[\begin{array}{c}n-\ell \\ k-\ell\end{array}\right]$;
(iv) $\left[\begin{array}{l}n \\ k\end{array}\right]=\left[\begin{array}{c}n \\ n-k\end{array}\right]$ whenever $0 \leqslant k \leqslant n$.

Most of the conclusions of Proposition 2.1 are found in standard references such as [1]. However, our definition of $\left[\begin{array}{l}n \\ k\end{array}\right]$ differs from the standard definition found in most sources, which either leave $\left[\begin{array}{l}n \\ k\end{array}\right]$ undefined for $n<0$, or define it to be zero in that case. Our extension to all $n \in \mathbb{Z}$ means that the recurrence formulas (i) hold for all integers n, k, unlike the 'standard definition' which fails for $n=k=0$. Property (i) plays a role in our later algebraic proofs using generating functions. In further defense of our definition, we observe that it has become standard to extend the definition of binomial coefficients $\binom{n}{k}$ so that $\binom{-n}{k}=(-1)^{k}\binom{n+k-1}{k}$ (see e.g. [1, p. 12]); and (ii) naturally generalizes this to Gaussian coefficients. We further note that (iii) holds for all $n, k \in \mathbb{Z}$ whether one takes the standard definition of $\left[\begin{array}{l}n \\ k\end{array}\right]$ or ours. The one advantage of the standard definition is that it renders superfluous the extra restriction $0 \leqslant k \leqslant n$ in the symmetry condition (iv). The interpretation of $\left[\begin{array}{l}n \\ k\end{array}\right]$ as the number of k-subspaces of an n-space over \mathbb{F}_{q} is valid for all $n \geqslant 0$.

In Section 8 we will make use of the well-known generating polynomials

$$
\left.E_{m}(t)=\prod_{i=0}^{m-1}\left(1+q^{i} t\right)=\sum_{\ell=0}^{\infty} q^{\ell(\ell)} 2\right)\left[\begin{array}{c}
m \\
\ell
\end{array}\right] t^{\ell} \quad \text { for } m=0,1,2, \ldots ;
$$

note that in the latter sum, the terms for $\ell>m$ vanish, yielding $E_{m}(t) \in \mathbb{Z}[q, t]$ (or after specializing to a fixed prime power q, we obtain $\left.E_{m}(t) \in \mathbb{Z}[t]\right)$. Here we see the usual binomial coefficient $\binom{\ell}{2}=\frac{1}{2} \ell(\ell-1)$. In Section 8 we will make use of the following obvious relations:

Proposition 2.2. For all $m \geqslant 0$, the generating function $E_{m}(t)$ satisfies
(i) $E_{m}(-q t)=\frac{1-q^{m} t}{1-t} E_{m}(-t)$;
(ii) $E_{m}\left(q^{2} t\right)=\frac{1+q^{m+1} t}{1+q t} E_{m}(q t)$; and
(iii) $E_{m}\left(r^{3} t\right)=\frac{1+r q^{m} t}{1+r t} E_{m}(r t)$ where $r=\sqrt{q}$.

3. Two-graphs and double covers of graphs

Here we describe the most basic connections between two-graphs and double covers of graphs; see [13,15,6,17] for more details. Our notation is chosen to conform to that used in subsequent sections.

Let \mathcal{V} be any set. Denote by $\binom{\mathcal{v}}{k}$ the collection of all k-subsets of \mathcal{V} (i.e. subsets of cardinality k). A two-graph on \mathcal{V} is a subset $\Delta \subseteq\binom{\nu}{3}$ such that for every 4-set $\{x, y, z, w\} \in\binom{v}{4}$, an even number, i.e. 0,2 or 4 , of the triples $\{x, y, z\},\{x, y, w\},\{x, z, w\}$,

https://daneshyari.com/en/article/4646655

Download Persian Version:

https://daneshyari.com/article/4646655

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: moorhous@uwyo.edu (G.E. Moorhouse), jwillif1@uwyo.edu (J. Williford).

