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a b s t r a c t

Let Γ = Γ (2n, q) be the dual polar graph of type Sp(2n, q). Underlying this graph is a
2n-dimensional vector space V over a field Fq of odd order q, together with a symplectic
(i.e. nondegenerate alternating bilinear) form B : V × V → Fq. The vertex set of Γ is
the set V of all n-dimensional totally isotropic subspaces of V . If q ≡ 1 mod 4, we obtain
from Γ a nontrivial two-graph ∆ = ∆(2n, q) on V invariant under PSp(2n, q). This two-
graph corresponds to a double cover Γ → Γ onwhich is naturally defined aQ -polynomial
(2n + 1)-class association scheme on 2|V| vertices.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Association schemes [2,6] were first defined by Bose andMesner [3] in the context of the design of experiments. Philippe
Delsarte used association schemes to unify the study of coding theory and design theory in his thesis [8], where he derived
his well-known linear programming bound which has since found many applications in combinatorics. There he identified
two types of association schemes which were of particular interest: the so-called P-polynomial and Q -polynomial schemes.
Schemeswhich are P-polynomial are precisely those arising fromdistance-regular graphs, and arewell studied. In particular,
much effort has gone into the classification of distance-transitive graphs, the P-polynomial schemes which are the orbitals
of a permutation group; and it is likely that all such examples are known. Also well-studied are the schemes which are both
Q -polynomial and P-polynomial. Awell-known conjecture [2, p. 312] of Bannai and Ito is the following: for sufficiently large
d, a primitive scheme is P-polynomial if and only if it is Q -polynomial.

Classification efforts for Q -polynomial schemes are far less advanced than in the P-polynomial case; in particular it
is likely that more examples from permutation groups are yet to be found. The Q -polynomial property has no known
combinatorial characterization, making their study more difficult. However, the list of known examples (see [12,14,19])
indicates that these objects have interesting structure from the viewpoint of designs, lattices, coding theory and finite
geometry.

In this paper, we give a new family of imprimitive Q -polynomial schemes with an unbounded number of classes. These
schemes are formed by the orbitals of a group, giving a double cover of the scheme arising from the symplectic dual polar
space graph. We note that only one other family of imprimitive Q -polynomial schemes with an unbounded number of
classes is known that is not P-polynomial, namely the bipartite doubles of the Hermitian dual polar space graphs, which
are Q -bipartite and Q -antipodal. The schemes in this paper are Q -bipartite, and have two Q -polynomial orderings. Except
when the field order q is a square, the splitting field of these schemes is also irrational. We note that this is the only known
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family of Q -polynomial schemes with unbounded number of classes and an irrational splitting field. In the last section we
give open parameters for hypothetical primitive Q -polynomial subschemes of this family.

Our paper is organized as follows: Background material on Gaussian coefficients, two-graphs and double covers of
graphs, are covered in Sections 2–3. In Section 4 we recall the standard construction of the symplectic dual polar graph
Γ = Γ (2n, q). There we also introduce the Maslov index, which we use in Section 5 to construct the double cover Γ → Γ

when q ≡ 1mod 4. In Section 6we construct a (2n+1)-class association scheme S = Sn,q from Γ ; and in Section 7we show
that S is Q -polynomial. The P-matrix of the scheme is constructed in Section 8. A particularly tantalizing open problem is
the question whether S is in general the extended Q -bipartite double of a primitive Q -polynomial scheme; see Section 9.

2. Gaussian coefficients

For all integers n, kwe define the Gaussian coefficientn
k


=

n
k


q
=

 (q
n
− 1)(qn−1

− 1) · · · (qn−k+1
− 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
, if k > 0;

0, if k < 0.

In particular for k = 0 the empty product gives
 n
0


= 1. In later sections, q will be a fixed prime power; but here we may

regard q as an indeterminate, so that for n > 0, after canceling factors we find
 n
k


∈ Z[q]; and specializing to q = 1 gives

the ordinary binomial coefficients
 n
k


1 =

n
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
. For general n ∈ Z we instead obtain a Laurent polynomial in q with integer

coefficients, i.e.
 n
k


∈ Z[q, q−1

], as follows from conclusion (ii) of the following.

Proposition 2.1. Let n, k, ℓ ∈ Z. The Gaussian coefficients satisfy
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(iv)
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whenever 0 6 k 6 n. �

Most of the conclusions of Proposition 2.1 are found in standard references such as [1]. However, our definition of
 n
k


differs

from the standard definition found in most sources, which either leave
 n
k


undefined for n < 0, or define it to be zero in

that case. Our extension to all n ∈ Z means that the recurrence formulas (i) hold for all integers n, k, unlike the ‘standard
definition’ which fails for n = k = 0. Property (i) plays a role in our later algebraic proofs using generating functions. In
further defense of our definition, we observe that it has become standard to extend the definition of binomial coefficients

n
k


so that


−n
k


= (−1)k

n+k−1
k


(see e.g. [1, p. 12]); and (ii) naturally generalizes this to Gaussian coefficients. We further note

that (iii) holds for all n, k ∈ Z whether one takes the standard definition of
 n
k


or ours. The one advantage of the standard

definition is that it renders superfluous the extra restriction 0 6 k 6 n in the symmetry condition (iv). The interpretation of n
k


as the number of k-subspaces of an n-space over Fq is valid for all n > 0.
In Section 8 we will make use of the well-known generating polynomials

Em(t) =

m−1
i=0

(1 + qit) =

∞
ℓ=0

q(
ℓ
2)

m
ℓ


tℓ form = 0, 1, 2, . . . ;

note that in the latter sum, the terms for ℓ > m vanish, yielding Em(t) ∈ Z[q, t] (or after specializing to a fixed prime power
q, we obtain Em(t) ∈ Z[t]). Here we see the usual binomial coefficient


ℓ

2


=

1
2ℓ(ℓ− 1). In Section 8 we will make use of the

following obvious relations:

Proposition 2.2. For all m > 0, the generating function Em(t) satisfies

(i) Em(−qt) =
1−qmt
1−t Em(−t);

(ii) Em(q2t) =
1+qm+1t

1+qt Em(qt); and

(iii) Em(r3t) =
1+rqmt
1+rt Em(rt) where r =

√
q. �

3. Two-graphs and double covers of graphs

Herewe describe themost basic connections between two-graphs and double covers of graphs; see [13,15,6,17] formore
details. Our notation is chosen to conform to that used in subsequent sections.

LetV be any set. Denote by

V
k


the collection of all k-subsets ofV (i.e. subsets of cardinality k). A two-graph onV is a subset

∆ ⊆

V
3


such that for every 4-set {x, y, z, w} ∈


V
4


, an even number, i.e. 0, 2 or 4, of the triples {x, y, z}, {x, y, w}, {x, z, w},
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